б) ; г)
.
№5. Решите уравнение:
а) ; б)
.
№6. Решите уравнение:
а) ; б)
.
№7. Решите уравнение:
а) ; б)
.
№8. Решите уравнение:
а) ; б)
.
№9. Решите уравнение:
а) ; б)
.
Методические рекомендации.
Как уже было замечено ранее, упражнения, представленные на этом уроке, позволяют ученику понять связь между решением тригонометрического уравнения и квадратного уравнения. Нетрудно также видеть, что решение тригонометрического уравнения, в конечном счете, сводится к решению простейшего тригонометрического уравнения, т.е. реализуется принцип дидактической спирали – непрерывного изучения материала всего школьного курса в контексте новой темы.
Задания, представленные под номерами 1 – 4, являются обязательными заданиями, их должен уметь решать каждый учащийся. Задания №5 - №9 рассчитаны на ученика, претендующего на оценку «4» и более.
Урок №9
После того, как учащиеся научились решать тригонометрические уравнения с помощью введения новой переменной, а также научились решать тригонометрические уравнения, сводимые к квадратным уравнениям, следует перейти к решению уравнений с помощью разложения на множители.
№1. Решите уравнение:
а) ;
б)
№2. Решите уравнение:
а) ; б)
.
№3. Решите уравнение:
а) ; б)
.
№4. Решите уравнение:
а) ;
б) .
№5. Решите уравнение:
а) ; б)
.
№6. Решите уравнение:
а) ; б)
.
№7. Решите уравнение:
а) ; б)
.
№8. Решите уравнение:
а) ;
б) .
№9. Решите уравнение:
а) ;
б) .
Методические рекомендации.
Большое внимание следует здесь уделить заданиям, представленным под номерами 5, 6. При решении задания №5 следует обратить внимание учащихся на возможное появление постороннего корня, и поэтому следует четко отслеживать область допустимых значений выражения, стоящего в правой части нашего уравнения. Аналогичное замечание справедливо и для №6.
Рассмотрим решение п. б) из №8.
№8. Решить уравнение.
б) .
Решение
Анализ учебника по литературе для 5 класса
Обращение к реальным запросам ученика — одна из особенностей школы сегодня. Литература как учебный предмет должна воспитать у ученика эстетический вкус и нравственную взыскательность, способствовать овладению искусством слова, вызвать потребность обращения к художественным произведениям.
В своей ...
Специфические категории специальной педагогики
Специальные категории специальной педагогики: воспитание, обучение и развитие аномальных детей как целенаправленный процесс формирования личности и деятельности, передачи и усвоения знаний, умений и навыков, основное средство подготовки их к жизни и труду.
Конечная цель - достижение развивающейся ...
Фрагмент урока для 11-го класса по теме «Иррациональные уравнения»
Комментарии к уроку
Тип данного урока - введение нового материала. Его основная цель - ввести понятие иррациональных уравнений и развивать умение применять способы решения иррациональных уравнений. Урок разработан таким образом, что учащиеся, путем исследования, самостоятельно выводят алгоритм ре ...