Приведем решение уравнений из №3.
№3. Найдите корни уравнения на заданном промежутке:
а) ,
.
Решение
.
Осуществляя перебор по параметру n, получаем корни уравнения на заданном промежутке.
Ответ:
б) ,
.
Решение
.
После перебора корней получаем ответ.
Ответ: .
Урок №7
Контрольная работа по материалам уроков №1 – №6.
Вариант 1
№1. Найдите значения выражений:
а) ;
б) .
№2. Упростите выражения:
а)
б) .
№3. Докажите тождество
.
№4. Решите уравнение
.
№5. Зная, что , найдите
.
№6. Известно, что .
Найдите .
Вариант 2
№1. Найдите значения выражений:
а) ;
б) .
№2. Упростите выражения:
а) ;
б) .
№3. Докажите тождество
.
№4. Решите уравнение
.
№5. Зная, что , найдите
.
№6. Известно, что .
Найдите .
Методические рекомендации.
Контрольная работа представлена по материалам уроков №1 – №6.
Цель контрольной работы – проверить сформированность умения выполнять тождественные преобразования тригонометрических выражений, используя формулы синуса и косинуса суммы и разности аргументов, а также умения применять изученные преобразования при решении тригонометрических уравнений.
В предложенной контрольной работе не были представлены задания, связанные с преобразованием выражений, содержащих тангенс суммы или разности аргументов. Формула тангенса суммы или разности аргументов отчетливо вытекает из формул косинуса и синуса суммы или разности аргументов, а также из определения тангенса.
Обязательному уровню усвоения учебного материала здесь соответствуют задания, представленные под номерами 1 – 4.
Пятое задание является заданием среднего уровня сложности, а шестое повышенного уровня сложности.
За выполнение заданий базового уровня ставится оценка «3». В случае успешного выполнения заданий базового уровня и одного из заданий более высоких уровней, ставится оценка «4», за выполнение всех заданий – оценка «5».
Урок №8 – №9
Тема урока: «Формулы двойного аргумента».
При изложении материала данных двух уроков мы будем придерживаться той схемы, которая была предложена в предыдущих уроках.
Однако при разработке системы упражнений следует учитывать тот факт, что при последовательном переходе от одного упражнения к другому, постепенно увеличивается их сложность. Кроме заданий на простое применение формул двойного аргумента, появляются задания, в которых данный материал комбинируется с материалом предыдущих уроков, в том числе и с материалом §1.
Методы диагностики сформированности фонематического слуха и восприятия у
детей с ЗПР
Состояние звуковой стороны речи и фонематического восприятия имеет большое значение для успешного овладения языком и обучения ребенка в школе. Р.Е. Левина рассматривала фонематическое восприятие и звуковой анализ как узловое образование, ключевой момент в системе коррекционной работы, который позв ...
Основные направления развития новых типов и видов специальных образовательных
учреждений
В последние годы создаются специальные образовательные учреждения и для других категорий детей с ограниченными возможностями здоровья и жизнедеятельности: с аутистическими чертами личности, с синдромом Дауна. Имеются также санаторные (лесные школы для хронически болеющих и ослабленных детей.
Спе ...
Программа О.В. Хухлаевой, О.Е. Хухлаева, И.М. Первушиной
"Тропинка к своему Я"
Программа сохранения и формирования психологического здоровья детей. Существуют сценарные разработки программы для дошкольников, младших школьников и подростков.
Цель программы: сохранение и формирование психологического здоровья детей, психологическая поддержка.
Авторы программы выделяют ее сле ...