Система упражнений по теме «Тригонометрические уравнения»

Страница 13

Приведем решение уравнений из №3.

№3. Найдите корни уравнения на заданном промежутке:

а) , .

Решение

.

Осуществляя перебор по параметру n, получаем корни уравнения на заданном промежутке.

Ответ:

б) , .

Решение

.

После перебора корней получаем ответ.

Ответ: .

Урок №7

Контрольная работа по материалам уроков №1 – №6.

Вариант 1

№1. Найдите значения выражений:

а) ;

б) .

№2. Упростите выражения:

а)

б) .

№3. Докажите тождество

.

№4. Решите уравнение

.

№5. Зная, что , найдите .

№6. Известно, что .

Найдите .

Вариант 2

№1. Найдите значения выражений:

а) ;

б) .

№2. Упростите выражения:

а) ;

б) .

№3. Докажите тождество

.

№4. Решите уравнение

.

№5. Зная, что , найдите .

№6. Известно, что .

Найдите .

Методические рекомендации.

Контрольная работа представлена по материалам уроков №1 – №6.

Цель контрольной работы – проверить сформированность умения выполнять тождественные преобразования тригонометрических выражений, используя формулы синуса и косинуса суммы и разности аргументов, а также умения применять изученные преобразования при решении тригонометрических уравнений.

В предложенной контрольной работе не были представлены задания, связанные с преобразованием выражений, содержащих тангенс суммы или разности аргументов. Формула тангенса суммы или разности аргументов отчетливо вытекает из формул косинуса и синуса суммы или разности аргументов, а также из определения тангенса.

Обязательному уровню усвоения учебного материала здесь соответствуют задания, представленные под номерами 1 – 4.

Пятое задание является заданием среднего уровня сложности, а шестое повышенного уровня сложности.

За выполнение заданий базового уровня ставится оценка «3». В случае успешного выполнения заданий базового уровня и одного из заданий более высоких уровней, ставится оценка «4», за выполнение всех заданий – оценка «5».

Урок №8 – №9

Тема урока: «Формулы двойного аргумента».

При изложении материала данных двух уроков мы будем придерживаться той схемы, которая была предложена в предыдущих уроках.

Однако при разработке системы упражнений следует учитывать тот факт, что при последовательном переходе от одного упражнения к другому, постепенно увеличивается их сложность. Кроме заданий на простое применение формул двойного аргумента, появляются задания, в которых данный материал комбинируется с материалом предыдущих уроков, в том числе и с материалом §1.

Страницы: 8 9 10 11 12 13 14 15 16 17


Другие статьи:

Методы диагностики сформированности фонематического слуха и восприятия у детей с ЗПР
Состояние звуковой стороны речи и фонематического восприятия имеет большое значение для успешного овладения языком и обучения ребенка в школе. Р.Е. Левина рассматривала фонематическое восприятие и звуковой анализ как узловое образование, ключевой момент в системе коррекционной работы, который позв ...

Основные направления развития новых типов и видов специальных образовательных учреждений
В последние годы создаются специальные образовательные учреждения и для других категорий детей с ограниченными возможностями здоровья и жизнедеятельности: с аутистическими чертами личности, с синдромом Дауна. Имеются также санаторные (лесные школы для хронически болеющих и ослабленных детей. Спе ...

Программа О.В. Хухлаевой, О.Е. Хухлаева, И.М. Первушиной "Тропинка к своему Я"
Программа сохранения и формирования психологического здоровья детей. Существуют сценарные разработки программы для дошкольников, младших школьников и подростков. Цель программы: сохранение и формирование психологического здоровья детей, психологическая поддержка. Авторы программы выделяют ее сле ...

Главные разделы

Copyright © 2022 - All Rights Reserved - www.centrstar.ru