Задания №1 - №6 являются обязательными для всех учащихся.
Как можно было заметить ранее, система упражнений, представленная к урокам №1 - №7 (в дальнейшем это будет справедливо при подборе упражнений и на последующих уроках), составлена таким образом, чтобы показать учащимся связь между преобразованиями, которые они изучали с 7 по 9 касс, и тригонометрическими уравнениями. Сначала от учащихся требуется простое понимание того, что тригонометрические функции могут принимать как положительные, так и отрицательные значения. Затем до сознания учеников доводиться тот факт, что любое тригонометрическое уравнение сводится к простейшему при помощи несложных преобразований, которые они уже знают (разложение на множители, введение новой переменной , приведение к квадратному уравнению).
Приведем решение № 9 (п. (а)) и №12.
№9. Найти корни заданного уравнения на заданном промежутке:
а) .
Решение
Однако для решения нашего уравнения данная запись формулы для нахождения корней тригонометрического уравнения не является удобной, поэтому воспользуемся другой записью
Нетрудно видеть, что простым перебором по параметру n мы сразу получаем все требуемые корни уравнения, т.е.:
Ответ: .
№12. Решить уравнение:
а) .
Решение
В данном уравнении речь идет об отыскании корней уравнения на отрезке
. Из серии
этому отрезку принадлежат только три значения:
.
Однако и
также являются решением данного уравнения, поэтому ответом будут являться следующие значения:
.
б) .
Решение
Так же как и в п. а), рассмотрим серию решений уравнения , накладывая на нее следующие ограничения:
.
Серией решения уравнения являются следующие значения x:
.
Очевидно, что неравенствам не будет удовлетворять только значение
(при
).
Ответ: .
Урок №8
На данном уроке целесообразно рассмотреть еще один случай введения новой переменной при решении тригонометрических уравнений: решение тригонометрических уравнений, сводящихся к квадратным уравнениям.
№1. Решите уравнение:
а) ; б)
.
№2. Решите уравнение:
а) ; б)
.
№3. Решите уравнение:
а) ; б)
.
№4. Решите уравнение:
а) ; в)
;
Единый Государственный Экзамен. Этапы перехода к стандартам образования
третьего поколения
С 1 января 2009 года единый государственный экзамен (ЕГЭ) был введен на территории всех субъектов Российской Федерации. Этому предшествовало 7 лет эксперимента и год переходного периода. С 2001 по 2007 год число регионов, включившихся в его проведение на добровольной основе, увеличилось с 5 до 82; ...
Методика применения пособия в процессе обучения по теме «Движения»
Методические требования к проведению занятий опираются на выявленные выше психолого-педагогические требования. Их реализация предусматривает проведение занятий с учащимися под руководством учителя с использованием компьютерного программного средства как основного организатора деятельности учащихся ...
Типы и виды экологических занятий
Занятия первично-ознакомительного типа. На протяжении дошкольного периода значительная доля первоначальных экологических сведений о разных сторонах жизни природы и деятельности человека передается детям на занятиях первично-ознакомительного типа. Чаще всего эти занятия посвящаются ознакомлению дет ...