Система упражнений по теме «Тригонометрические уравнения»

Страница 7

Решение тригонометрических уравнений с помощью введения новой переменной .

Решение тригонометрических уравнений, приводимых к квадратным уравнениям.

Решение тригонометрических уравнений с помощью разложения на множители.

Решение однородных тригонометрических уравнений и уравнений, приводимых к ним.

тригонометрический уравнение урок методический

Урок №7

№1. Решите уравнение:

а) ; б) .

№2. Решите уравнение:

а) ; б) .

№3. Решите уравнение:

а) ; б) .

№4. Решите уравнение:

а) ; б) ;

б) ; г) .

№5. Решите уравнение:

а) ; б) .

№6. Решите уравнение:

а) ; в) .

№7. а) Найдите корни уравнения , принадлежащие отрезку .

б) Найдите корни уравнения , принадлежащие отрезку .

№8. Найдите корни заданного уравнения на заданном промежутке:

а) ; в) ;

б) ; г) .

№9. Найдите корни заданного уравнения на заданном промежутке:

а) ; в) ;

б) ; г) .

№10. Решите уравнение и найдите:

а) наименьший положительный корень;

б) корни, принадлежащие отрезку .

№11. Решите уравнение и найдите:

а) наибольший отрицательный корень;

б) корни, принадлежащие интервалу .

№12. Решите уравнение:

а) ; в) ;

б) ; г) .

Методические рекомендации.

Задания, представленные под номерами 9 – 11, не являются обязательными, однако, именно эти номера (т.к. здесь мы имеем место с отбором корней тригонометрического уравнения) позволяют учащимся осознать роль параметра в формуле корней тригонометрического уравнения.

Задания, аналогичные №12, можно также решать с учащимися и при решении тригонометрических уравнений с помощью разложения на множители, но, т.к. при решении уравнений данного типа (область допустимых значений здесь не вся числовая прямая, т.е. имеют место некоторые ограничения) также можно говорить об отборе корней тригонометрического уравнения.

Страницы: 2 3 4 5 6 7 8 9 10 11 12


Другие статьи:

Влияние инновационной деятельности на повышение профессиональной компетенции педагога дополнительного образования
Инновационная деятельность учителя - социально-педагогический феномен, отражающий его творческий потенциал, выходящий за пределы нормативной деятельности (Сластенин В., Исаев И. и др. Педагогика. Учебное пособие) Педагог дополнительного образования - это ключевая фигура, от профессионализма котор ...

Цели и задачи обучения творческим работам слабослышащих школьников
Учитель и ученик должны сотрудничать под единым девизом: «Знать – уметь – творить – хотеть совершенствоваться и реализовываться». Каждый ребенок по-своему талантлив, но ему нужно помочь найти себя, раскрыть свои способности, реализоваться. И я как педагог всегда ставлю перед собой цель – увидеть, ...

Анализ научно-методической литературы по проблеме организации коллективной формы учебной деятельности на уроках математики
Коллективная учебная деятельность как самостоятельная организационная форма обучения стала предметом исследования ученых и педагогов, которые определили основные ее черты. Разрабатывая основные положения оптимизации учебного процесса, Ю.К. Бабанский, М.Н. Скаткин [25, 28] и др. также уделяли больш ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.centrstar.ru