Система упражнений по теме «Тригонометрические уравнения»

Страница 6

а) ; б) .

№8. Решите уравнение:

а) ; б) .

№9. Решите уравнение:

а) ; б) .

№10. Решите уравнение:

а) ; б) .

№ 11. Решите уравнение:

а) ; б) .

№ 12. Решите уравнение:

а) ; б) .

№ 13. Решите уравнение:

а) ; б) .

№14. Решите уравнение:

а) ; б) .

№15. Постройте график функции:

а) ; в) ;

б) ; г) .

№16. Постройте график функции:

а) ; в) ;

б) ; г) .

Методические рекомендации.

Как и в предыдущих уроках, при составлении системы упражнений реализуется принцип от простого к сложному, который в данном случае заключается в том, что сначала приведены задания, в которых от учащихся не требуется выполнение каких-либо преобразований, а затем в уравнения, представленные в заданиях, постепенно вводятся дополнительные преобразования (формулы приведения, вводятся дробные выражения, квадратные уравнения и т.п.).

Задания, представленные выше под номером 14 и 15, рассчитаны на сильного ученика, претендующего на оценку «5», поэтому их целесообразно задавать в качестве дополнительных номеров в домашнем задании.

Приведем решение к заданиям №14 и №15.

№14. Постройте график функции:

а)

Решение

По определению арксинуса числа имеем

Тогда изменяется в пределах от -1 до 1. Но , следовательно, мы получаем функцию вида , где .

Решение заданий б), в) и г) – аналогичное.

№15. Постройте график функции:

а) .

Решение

Рассмотрим область определения данной функции: .

Теперь упростим выражение, стоящее в правой части записи функции. Получаем

.

Задача свелась к построению графика функции , при .

Остальные задания этого номера решаются аналогично, с учетом области определения заданных функций.

Уроки №7 - №10

Тема: «Тригонометрические уравнения».

При составлении системы упражнений по данной теме следует выделить четыре «блока»:

Страницы: 1 2 3 4 5 6 7 8 9 10 11


Другие статьи:

Формы организации учебной деятельности
Известно, что обучение – это процесс взаимодействия учителя с учащимися при работе над определенным содержанием учебного материала с целью его усвоения и овладения способами познавательной деятельности. Чтобы осуществлять процесс, необходимо его организовывать. Что же такое организация? В «Философ ...

Позиция и положение ученика в современном образовании
Становление в настоящее время информационного общества несёт в себе фундаментальное перестроение всего образования. Если массовое образование XIX и XX вв. было настроено на формирование некоторого конечного набора компетенций, достаточного для работы по любой профессии, то на рубеже нового века (н ...

Роль церковной благотворительности на Руси в развитии социального
Русский народ с самых древнейших времен воспринял христианское учение о милосердии как о всеобъемлющей любви к ближнему, как традицию, унаследованную от Церкви Константинопольской и Царствующего Града. Так, обращаясь к князю Владимиру, митрополит Киевский Илларион подчеркивает его милосердие и гов ...

Главные разделы

Copyright © 2022 - All Rights Reserved - www.centrstar.ru