Комментарии к уроку
Тип данного урока - введение нового материала. Его основная цель - ввести понятие иррациональных уравнений и развивать умение применять способы решения иррациональных уравнений. Урок разработан таким образом, что учащиеся, путем исследования, самостоятельно выводят алгоритм решения иррациональных уравнений и ее свойства. На уроке используются такие приемы коллективной формы обучения, как решение проблемно-поисковых задач и самостоятельное проведение исследования.
Оборудование: плакаты; карточки.
Изложение нового материала – 13 мин.
На магнитной доске висят карточки с уравнениями.
Учитель: Прошу вашего внимания на доску. Здесь расположены карточки, на которых записаны уравнения. Посмотрите внимательно и определите, какие уравнения вы уже умеете решать, а какие у вас вызывают затруднения?
Карточки:
![]()
![]()

![]()
Кто из вас может выйти к доске убрать карточки с уравнениями, которые вы можете решить и назвать их тип?
Вывод: Остались карточки с уравнениями, которые вы еще не умеете решать.
Чем отличается запись этих уравнений от тех, которые мы убрали?
(Предполагаемый ответ: неизвестное находится под знаком корня).
Верно! Такие уравнения, в которых под знаком корня содержится переменная, называются иррациональными уравнениями.
Итак, построим алгоритм решения простейших иррациональных уравнений, рассмотрим некоторые способы решения более сложных иррациональных уравнений.
Учитель объясняет алгоритм решения и оформления иррациональных уравнений.
Берет первую карточку с уравнением, прикрепляет к основной доске и решает его.
Решение.
Основной метод решения иррациональных уравнений – это метод возведения в квадрат обеих частей уравнения. Но при этом мы можем получить неравносильное уравнение, поэтому в конце обязательно нужно сделать проверку.
Возведем обе части уравнения в квадрат, получим
Проверка.
При
верное равенство.
При
верное равенство.
3. Следовательно, числа –3 и 3 являются решениями данного иррационального уравнения.
Ответ: -3; 3.
Учитель: А как бы вы решали вот такое уравнение:
.
2. Выходит учащийся к доске и решает второе уравнение этим же способом.
Решение.
Возведем обе части уравнения в квадрат, получим
Проверим, являются ли полученные значения переменной решениями данного уравнения?
Проверка.
При
верное равенство.
При
верное равенство.
Следовательно, число 2 является решением данного уравнения.
(Ответ: 2).
Итак, получили, что только одно значение переменной является решением данного уравнения. Это число 2. Число –1 в данном случае называется посторонним конем.
Вопрос к отвечающему: «Скажи, важна ли проверка в иррациональных уравнениях, решаемых таким способом и почему?»
(Предполагаемый ответ: да, так как могут появиться посторонние корни).
Учитель: Возможность появления посторонних корней обязывает нас быть очень внимательными при решении иррациональных уравнений.
Отечественные и зарубежные подходы к проблеме использования нетрадиционных
техник рисования
В свете последних изменений в социально-экономической и мировоззренческой сферах Российского общества встал вопрос об обновлении методов реализации концепции дошкольного воспитания. Ключевыми позициями обновления советского детского сада стали охрана и укрепление здоровья детей, гуманизация целей ...
Использование видеоматериалов на среднем этапе обучения
Одна из основных задач обучения иноязычной речи – развитие навыков говорения. Но овладение этим видом деятельности сопряжено с большими трудностями, которые обусловлены сложностью самого процесса порождения речевого высказывания. В процессе просмотра на уроках видеофильмов на иностранном языке, со ...
Понятие среднего профессионального образования, типы учреждения среднего
профессионального образования
Среднее профессиональное образование (далее - СПО) – это уровень образования, приобретаемый на базе полного или неполного общего среднего, в соответствующих профессиональных учебных заведениях: училищах, техникумах и колледжах:
- училище – это учебно-воспитательное учреждение, название учебных за ...