Система упражнений по теме «Тригонометрические уравнения»

Страница 2

Задания под номером 9 и 10 рассчитаны на учащихся, претендующих на отличную оценку.

Нетрудно видеть, что в заданиях, представленных в №1 – №4 требуется найти те значения t, которым соответствуют табличные значения синуса, косинуса или тангенса. Кроме того, данные задания не требуют выполнения дополнительного преобразования выражения, стоящего в правой части записи заданных уравнений. В задании №3 приведены примеры, которые требуют от учащихся четкого понимания ограниченности функций синус и косинус.

Задания, представленные под номером, предполагают знание учащимися формул приведения и умение применять эти формулы при решении конкретной задачи.

Нетрудно видеть, что далее приведены задания, в которых учащиеся должны уметь применять основные преобразования выражений, изученные ими в курсе 7 - 9 класса.

Урок №2

Тема урока: «Арккосинус и решение уравнения »

№1. Вычислите:

а) ; в) ;

б) ; г) .

№2. Вычислите:

а) ; в) ;

б) ; г) .

№3. Вычислите:

а) ; в) ;

б) ; г).

№4. Вычислите:

а) ; в) ;

б) ; г)

№5. Вычислите:

а) ;

б) .

№6. Найдите область допустимых значений выражения:

а) ; в) ;

б) ; г) .

№7. Имеет ли смысл выражение:

а) ; в) ;

б) ; г) .

№8. Докажите тождество:

.

№9. Вычислите:

а) ; в) ;

б) ; г) .

№10. Постройте график функции:

а) ; б) .

Методические рекомендации.

Задачи обязательного уровня – это задания, представленные под номерами 1 – 4, остальные задания рассчитаны на дифференцированную работу с учащимися. В представленных здесь заданиях учащиеся должны уметь находить значения арккосинуса заданного числа и решать несложные вычислительные задачи. На уроке целесообразно решить те уравнения, которые представлены в заданиях под пунктами а) и б), а пункты в) и г) следует задать учащимся качестве домашнего задания.

Задания под номером 8 – 10 рассчитаны на учащихся, претендующих на отличную оценку. Здесь учащиеся должны понимать смысл понятия арккосинус и уметь находить значения тригонометрических функций от арккосинуса какого-либо числа.

Страницы: 1 2 3 4 5 6 7


Другие статьи:

Условия развития речи у детей старшего дошкольного возраста
Речь — это важнейшая творческая психическая функция человека, область проявления присущей всем людям способности к познанию, самоорганизации, саморазвитию, к построению своей личности, своего внутреннего мира через диалог с другими личностями, другими мирами, другими культурами. Диалог, творчеств ...

Разработка занятий в системе детского образования
Учебно-тематический план 1 год обучения – год. Ремесла (7-8 лет 1 класс) № Темы часы в том числе теория практика 1 Вводная тема 2 1 1 2 Основные сведения о березе и бересте 8 4 4 3 Художественная обработка бересты (тиснение) 22 2 ...

Специфика философского понимания явлений специальной педагогики
Философская рефлексия обращена, прежде всего на существенные, основополагающие вопросы, поэтому на философском уровне обобщения могут быть рассмотрены наиболее важные, концептуальные проблемы, перспективы развития специальной педагогики, для осмысления которых нужна координация усилий многих специ ...

Главные разделы

Copyright © 2022 - All Rights Reserved - www.centrstar.ru