Система упражнений по теме «Тригонометрические уравнения»

Страница 2

Задания под номером 9 и 10 рассчитаны на учащихся, претендующих на отличную оценку.

Нетрудно видеть, что в заданиях, представленных в №1 – №4 требуется найти те значения t, которым соответствуют табличные значения синуса, косинуса или тангенса. Кроме того, данные задания не требуют выполнения дополнительного преобразования выражения, стоящего в правой части записи заданных уравнений. В задании №3 приведены примеры, которые требуют от учащихся четкого понимания ограниченности функций синус и косинус.

Задания, представленные под номером, предполагают знание учащимися формул приведения и умение применять эти формулы при решении конкретной задачи.

Нетрудно видеть, что далее приведены задания, в которых учащиеся должны уметь применять основные преобразования выражений, изученные ими в курсе 7 - 9 класса.

Урок №2

Тема урока: «Арккосинус и решение уравнения »

№1. Вычислите:

а) ; в) ;

б) ; г) .

№2. Вычислите:

а) ; в) ;

б) ; г) .

№3. Вычислите:

а) ; в) ;

б) ; г).

№4. Вычислите:

а) ; в) ;

б) ; г)

№5. Вычислите:

а) ;

б) .

№6. Найдите область допустимых значений выражения:

а) ; в) ;

б) ; г) .

№7. Имеет ли смысл выражение:

а) ; в) ;

б) ; г) .

№8. Докажите тождество:

.

№9. Вычислите:

а) ; в) ;

б) ; г) .

№10. Постройте график функции:

а) ; б) .

Методические рекомендации.

Задачи обязательного уровня – это задания, представленные под номерами 1 – 4, остальные задания рассчитаны на дифференцированную работу с учащимися. В представленных здесь заданиях учащиеся должны уметь находить значения арккосинуса заданного числа и решать несложные вычислительные задачи. На уроке целесообразно решить те уравнения, которые представлены в заданиях под пунктами а) и б), а пункты в) и г) следует задать учащимся качестве домашнего задания.

Задания под номером 8 – 10 рассчитаны на учащихся, претендующих на отличную оценку. Здесь учащиеся должны понимать смысл понятия арккосинус и уметь находить значения тригонометрических функций от арккосинуса какого-либо числа.

Страницы: 1 2 3 4 5 6 7


Другие статьи:

Понятие личности и её развития
В каждой науке о человеке, к числу которых принадлежит и педагогика, «личность» является ключевым понятием. Поэтому очень важно точно разобраться в определении этого понятия. Итак, что в классическом понимании включает в себя слово «личность»? Личность - это осознание себя, внешнего мира и места ...

Виды понятий
Понятия можно классифицировать по объему и по содержанию. По объему понятия делятся на единичные, общие и пустые. Объем единичного понятия составляет одноэлементный класс (например, «столица Украины» и др.). Объем общего понятия включает число элементов, большее единицы (например, «автомобиль», ...

Организация устных вычислений учащихся
Чтобы навыки устных вычислений постоянно совершенствовались, необходимо установить правильное соотношение в применении устных и письменных приёмов вычислений, а именно: вычислять письменно только тогда, когда устно вычислять трудно. Упражнения в устных вычислениях должны пронизывать весь урок. Их ...

Главные разделы

Copyright © 2023 - All Rights Reserved - www.centrstar.ru