Рассмотрим на примере, как при решении уравнений знание области изменения функций, в него входящих, упрощает поиски корней.
Пример 3. Решить уравнение
Рассмотрим функции, стоящие в левой и правой частях уравнения, . Найдем их множество значений
. Воспользуемся утверждением 1: так как множества значений имеет общую точку 2, от уравнения можно перейти к системе
. Решением системы, а, значит, и исходного уравнения является
.
Утверждение 4. Пусть дано неравенство . Если множества значений этих функций имеют общую точку
;
, то неравенство равносильно системе
.
Пример 4. Решить неравенство .
ОДЗ неравенства есть все действительные x, кроме -1. Разобьем ОДЗ на три промежутка и рассмотрим неравенство на каждом из этих промежутков. На первом и третьем промежутках неравенство выполняется для любого x:
(
);
(
);
(
). Следовательно, оба промежутка являются решением неравенства. На втором промежутке
, то есть неравенство решений не имеет. Исходя из этого получаем решением неравенства
.
Постановка домашнего задания.
1) Выучить теоретический материал.
2) Найти множество значений функций:
а); б)
.
3) Решить уравнение .
Занятие №6 Тема: «Использование понятия области изменения функции при решении уравнений».
Цель: закрепить знания по теме «Использование понятия области изменения функции при решении уравнений».
Ход занятия:
Проверка домашнего задания. До начала занятия один из учеников записывает домашнее задание на доске учитель и другие ученики проверяют решение.
Решение задач. На доске написан список задач. Учащиеся по одному решают у доски. Учитель напоминает, что данные уравнения и неравенства решаются с использованием множества значений функций, в них входящих.
;
;
;
;
;
;
;
;
;
.
Подведение итогов занятия.
Учитель выставляет баллы за занятие: 1 балл за решение домашнего задания, по одному баллу за решение задач у доски
Приемы организации коллективной формы учебной деятельности учащихся на
уроках математики
В данном параграфе рассмотрены различные приемы организации коллективной формы учебной деятельности учащихся, на основе которых были самостоятельно разработаны примеры их применения на уроках математики.
Рассмотрим несколько приемов организации коллективной работы на уроках, которые приводит в св ...
Интерпритация результатов исследования деятельности социального педагога с
педагогически запущенными детьми
В результате использования данных методик получены результаты первичной диагностики по каждому ребенку:
Клиент № 1.
13 лет, 7 класс.
Ребенок пропускает занятия в школе без уважительных причин. Успеваемость ниже среднего, «троечник». Отставание в учебе происходит также по медицинским показаниям ...
Конструирование по замыслу
Конструирование по замыслу по сравнению с конструированием по образцу обладает большими возможностями для развертывания творчества детей, для проявления их самостоятельности; здесь ребенок сам решает, что и как он будет конструировать. Но надо помнить, что создание замысла будущей конструкции и ег ...