.
Проверочная работа.
Вариант №1
;
;
.
Вариант №2
;
;
.
Критерии оценивания:
«5» - верно выполнены все задания;
«4» - верно выполнены любые два задания;
«3» - верно выполнено любое одно задание.
Занятие №5 Тема: «Использование понятия области изменения функции при решении уравнений».
Цели:
а) изучить теоретический материал по теме «Использование понятия области изменения функции при решении уравнений»;
б) познакомить с основными способами определения множества значений функции.
Ход занятия:
Проверка домашнего задания. На доске записывается ответ к каждому заданию. Если у большинства учащихся есть затруднения в решении, то задание разбирается на доске. Если задание вызвало затруднение у небольшой группы учащихся, то к каждому из них «приставляется» ученик, выполнивший задание, с целью объяснить решение.
Лекция по теме «Использование понятия области изменения функции при решении уравнений».
Утверждение 1. Пусть дано уравнение , причем функции как правило разнородные. Если множества значений этих функций имеют общую точку (или небольшое конечное число общих точек) ; , то уравнение равносильно системе .
В системе можно решить только одно уравнение, а второе проверить подстановкой получившихся корней.
Утверждение 2. Если области изменения функций, входящих в уравнение (неравенство), не имеют общих точек, то уравнение (неравенство) решений не имеет.
Существует несколько способов определения множества значений функций. Рассмотрим их на примерах.
Пример 1. Найти область изменения функции .
Для решения задачи построим схему графика с помощью производной:
1) область определения функции y промежуток ;
2) с помощью производной найдем экстремумы. В точке функция принимает свое максимальное значение;
3) найдем значения функции в точке максимума и на концах отрезка области определения: ; ; .
4) таким образом, получаем .
Пример 2. Найти область изменения функции .
Преобразуем функцию к виду .
Область изменения этой функции находится непосредственно: .
Для нахождения множества значений некоторых тригонометрических функций удобно пользоваться следующим фактом.
Утверждение 3. Функция вида изменяется на отрезке
Пример 3. Найти область изменения функции .
Введем замену и рассмотрим функцию , . Ее область изменения с помощью производной найти гораздо проще. .
Сущность понятия «учебные умения и навыки младших школьников»
В отечественной дидактике сложилась совокупность требований, способствующих повышению эффективности формирования и развития общеучебных умений. Эти умения должны выступать в качестве предмета обучения, и для этого необходимо специально выделять время в границах всех учебных дисциплин. В связи с те ...
Происхождение названия Орша. Версия первая
Говоря о происхождении названия Орша, необходимо очень осторожно и критически относится к версии , которая связывает его со словом “рэшутай”(орешник). На сегодняшний день нет подтверждающих сведений об как будто больших зарослях орешника в прошлом на берегу Ршы , как в прошлом, бесспорно , называл ...
Хранение курсовых работ
Курсовые работы хранятся на кафедре. Срок хранения курсовых работ устанавливается Номенклатурой дел Института.
Для представления на конкурсы или использования в интересах выпускающих кафедр курсовые работы решением заведующего кафедрой могут быть оставлены на хранение на кафедрах и после установл ...