Принципиальным положением организации школьного математического образования в настоящее время является дифференциация обучения математике – уровневая дифференциация и профильная дифференциация в старших классах средней школы. Концепция модернизации российского образования на период до 2010 г. предусматривает создание “системы специализированной подготовки (профильного обучения) в старших классах общеобразовательной школы, ориентированной на индивидуализацию обучения и социализацию учащихся, в том числе с учетом реальных потребностей рынка труда… отработка гибкой системы профилей”. Широкий переход на профильное обучение в старших классах общеобразовательных учреждений Российской Федерации начался с 2006/07 учебного года.
В России имеется опыт дифференцированного обучения. В 1864 г. было введено разделение образования на два типа - “классическое” (открывающее путь для поступления в университет) и реальное. Проект реформы образования 1915–1916 гг. предусматривал разделение на три варианта: новогуманитарное, гуманитарное и реальное образование. С 1918 по 1934 г. в старших классах выделялось три направления: гуманитарное, естественно-математическое и техническое. В 1934 г. были введены единые учебные планы и единые учебные программы. Но дальнейшее развитие социалистического строительства вызвало необходимость дифференциации обучения. Для этого, наряду с развитием системы школ (классов) с углубленным изучением отдельных предметов, в 1966 г. были организованы массовые факультативные курсы в общеобразовательных школах.
В 1970–1980 гг. обучение старшеклассников было связано с получением массовых профессий в системе учебно-производственных комбинатов. Однако этот опыт оказался малоэффективным: существенные затраты на узкопрофильное обучение не восполнялись из-за невостребованности этих профессий на рынке труда. Федеральный закон “Об образовании”, принятый в 1992г., открыл возможности для создания широкого спектра общеобразовательных учреждений (лицеев, гимназий, колледжей), широко реализующих вариативные программы обучения, в том числе и профильной предпрофессиональной подготовки .
В настоящее время программа по математике для средней общеобразовательной школы, работающей по базисному учебному плану, предполагает формирование у школьников представлений о математике как части общечеловеческой культуры, как определенном методе познания мира. Но на данный момент содержание школьного курса математики не соответствует требованиям, возникшим в современных условиях. Объем знаний, необходимый человеку, резко возрастает, в то время как количество отводимых для занятий часов сокращается. Одним из средств реализации требований программы и решения имеющихся проблем является переход школы на профильное обучение и введение элективных курсов. Согласно «Концепции профильного обучения на старшей ступени общего образования» особая роль при организации профильного обучения отводится элективным курсам, которые связаны с удовлетворением индивидуальных образовательных интересов, потребностей и склонностей каждого школьника. Их введение направлено на реализацию личностно-ориентированного учебного процесса, при котором существенно расширяются возможности построения учащимися индивидуальных образовательных программ, поскольку элективные курсы в наибольшей степени связаны с выбором каждым школьником содержания образования в зависимости от его интересов, способностей, последующих жизненных планов. Мотивами для выбора элективного курса у учеников могут быть следующие:
- подготовка к выпускным и вступительным экзаменам;
- поддержка изучения базового курса математики;
- заинтересованность математикой;
- профессиональная ориентация.
В курсы может быть включен материал, связанный с уравнениями и неравенствами. Он составляет значительную часть школьного курса математики, но временные рамки урока не позволяют рассмотреть все вопросы. Кроме того, обязательным минимумом содержания обучения математике, заданным государственным стандартом для основной школы, определен учебный материал для обязательного рассмотрения, но не для обязательного усвоения (например, нестандартные методы решения уравнений и неравенств, методы решения уравнений и неравенств с параметром и т.д.).
Ввиду важности и обширности материала, связанного с понятиями уравнений и неравенств, их изучение в современной методике математики организовано в содержательно-методическую линию – линию уравнений и неравенств. Существует три основных направления развертывания данной линии в школьном курсе математики.
Прикладная направленность линии уравнений и неравенств раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Уравнения и неравенства являются основной частью математических средств, используемых при решении текстовых задач.
Теоретико-математическая направленность раскрывается в двух аспектах: в изучении наиболее важных классов уравнений, неравенств и их систем, и в изучении обобщенных понятий и методов относящихся к линии в целом.
Для линии уравнений и неравенств характерна направленность на установление связей с остальным содержанием курса математики. Линия уравнений и неравенств также тесно связана с функциональной линией. С одной стороны – применение методов, разрабатываемых в линии уравнений и неравенств, к исследованию функции. С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств.
С каждым уравнением, неравенством связаны конструирующие их аналитические выражения. Последние в свою очередь могут задавать функции одной или нескольких переменных. Поэтому присутствие функций, а точнее, их свойств, не может не влиять на решение задач такого рода. Просто в одних случаях мы как бы негласно используем свойства функций, в других явно ссылаемся на них. Порой «гласное» смещение акцентов в сторону свойств функций может оказать существенную пользу в поиске рациональных идей решения. Изученные свойства функций и методы их исследования должны найти применение в школе при решении уравнений, неравенств. В школьном курсе математики рассмотрение этих вопросов остается в стороне, но в ЕГЭ достаточно часто встречаются задания, решаемые с помощью применения свойств функций. Поэтому целесообразно этот материал вынести на курсы по выбору.
Таким образом, тема данной работы «Решение уравнений и неравенств с использованием свойств функций на элективном курсе по математике в старших классах общеобразовательной школы» актуальна
Объект исследования: процесс применения свойств функции как метода решения уравнений, неравенств на элективных курсах в старших классах.
Предмет исследования: методика изучения темы «Использование свойств функций для решения уравнений и неравенств» на элективных курсах.
Цель работы: разработать методику применения свойств функции для решения уравнений и неравенств на элективных курсах.
Гипотеза: умение применять необходимые свойства функций при решении уравнений и неравенств позволит учащимся решать их на сознательной основе, использовать различные способы решения, выбирая из них наиболее рациональные, в том числе те, которые не рассмотрены в школьных учебниках.
Для достижения поставленной цели необходимо решить следующие задачи:
Проанализировать программу и основные учебники, предусмотренные Федеральным перечнем учебников по математике для 10-11 классов, с точки зрения применения свойств функций при решении уравнений и неравенств.
Проанализировать задания и результаты ЕГЭ.
Подобрать систему заданий для работы на элективных курсах по математике.
Разработать методические рекомендации по обучению решения уравнений и неравенств с использованием свойств функций.
Осуществить опытное преподавание.
Для решения поставленных задач применялись следующие методы:
Изучение математической, методической и педагогической литературы.
Анализ школьных учебников, текстов и результатов ЕГЭ.
Опытное преподавание.
Наблюдение за работой учащихся на уроках и внеклассных занятиях по математике.
Структура сюжетно-ролевой игры
Игра как отражательная деятельность является вторичным этапом в познании ребенком действительности. Однако в сюжетно-ролевой игре знания, впечатления ребенка не остаются неизменными: они пополняются и уточняются, качественно изменяются, преобразовываются. Это делает игру формой практического позна ...
Понятие «игра»
Игра наряду с трудом и ученьем – один из основных видов деятельности человека, удивительный феномен нашего существования. По определению Г.К. Селевко – игра – это вид деятельности в условиях ситуаций, направленных на воссоздание и усвоение общественного опыта, в котором складывается и совершенству ...
Структура Болонского процесса
В процессе реформирования образования в странах Болонского содружества, предлагается ввести два цикла обучения: 1-й - получение первой академической степени, т.е. степени бакалавра и 2-й - степени магистра. При этом продолжительность обучения бакалавра должно быть не меньшее 3-х и не большее 4-х л ...