Методические основы разработки элективного курса

Страница 1

Пояснительная записка. Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продолжения образования. Данный элективный курс связан с основным курсом математики. Развивает систему ранее приобретенных программных знаний, углубляет и расширяет курс математики основной школы. Материал, связанный с уравнениями и неравенствами, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения и неравенства широко используются в различных разделах математики, в решении важных прикладных задач. Есть много уравнений и неравенств, которые считаются для школьников задачами повышенной трудности. Для решения таких задач лучше применять не традиционные методы, а приёмы, которые не совсем привычны для учащихся. В данном элективном курсе рассматривается метод решения уравнений и неравенств, основанный на применении свойств функций (монотонность, ограниченность, четность и др.). Целесообразность этого метода состоит в том, что он дает более рациональное решение уравнений или неравенств. Учебный материал, касающийся нестандартных методов решения уравнений и неравенств, содержится в учебных пособиях для подготовки к ЕГЭ по математике, к конкурсным экзаменам в вузы. Во временных рамках уроков полностью этот материал рассмотреть невозможно, поэтому есть смысл вынести его на курсы по выбору.

Цели курса:

познакомить учащихся с некоторыми приёмами решения уравнений и неравенств с использованием свойств входящих в них функций, показать применение производной при решении уравнений или неравенств;

обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений;

углубление и расширение знаний учащихся;

привить ученику навыки употребления нестандартных методов рассуждения при решении задач;

формирование у учащихся устойчивого интереса к предмету;

выявление и развитие их математических способностей, ориентация на профессии, существенным образом связанных с математикой;

подготовка учащихся к итоговой аттестации и к обучению в вузе.

Требования к подготовке учащихся. В результате изучения данного элективного курса ученик должен

знать:

основные свойства функций, которые применяются при решении уравнений и неравенств;

о применении производной при решении уравнений и неравенств;

уметь:

объяснять, на основе какого свойства функции решаются уравнение или неравенство;

применять производную для доказательства свойства функции, входящей в уравнение или неравенство;

использовать приобретённые знания и умения в практической деятельности при подготовке к ЕГЭ.

Тематика и содержание данного элективного курса отвечает следующим требованиям:

поддержание изучения базового курса алгебры;

социальная и личностная значимость: повышается уровень образованности учащихся, расширяется их кругозор, удовлетворяются познавательные интересы в области математики;

обладание значительным развивающим потенциалом (развитие математического мышления, умения систематизировать, обобщать, делать выводы).

Основная форма изложения теоретического материала – лекция. На всех практических занятиях должна присутствовать самостоятельная работа учащихся: как индивидуально, так и в группах. Такая организация учебной деятельности способствует реализации поставленных целей курса, так как развитие способностей учащихся возможно лишь при сознательном, активном участии в работе самих школьников.

Содержание курса может быть освоено как в коллективных, так и в индивидуально-групповых формах. Численность учебной группы может быть любой.

Ожидаемый результат изучения курса:

знание учащимися методов решения уравнений и неравенств с использованием свойств, входящих в них функций;

умение самостоятельно добывать информацию и осознанно ее использовать при выполнении заданий;

приобретение опыта в нахождении правильного и рационального пути решения уравнений и неравенств;

практика работы в группе: умение распределять обязанности, учитывать мнение каждого члена группы, адекватно оценивать работу товарищей (при условии коллективной формы организации обучения).

Страницы: 1 2


Другие статьи:

Работа с видеофрагментами
Одна из основных возможностей видео не свойственная никаким другим средствам наглядности – это способность создания речевой среды, которой так недостаёт учащимся при обучении иностранному языку. Количество новых лексических единиц не должно превышать 3-7 и большинство из них учащиеся понять из сит ...

Задачи как средство изучения геометрических преобразований при изучении темы «Движение»
Как уже отмечалось, геометрия возникла из практики и находит свое применение на практике, и потому в преподавании геометрии необходимо связывать ее с реальными наглядно представимыми вещами. По мнению Г. Фройденталя, обучение геометрии может иметь смысл, если только используются связи геометрии с ...

Написание заявки на авторский сценарий театрализованной программы
В своем сценарии театрализованной программы я раскрываю тему: Что такое добрый поступок и доброе слово, как они могут изменить происходящее? Формирование вежливого поведения детей находится в зависимости от понимания сущности вежливости. Если вежливость определить как внешнее выражение уважения и ...

Главные разделы

Copyright © 2023 - All Rights Reserved - www.centrstar.ru