Использование свойств функций при решении уравнений и неравенств

Страница 3

Пример 2. Решить неравенство

Нахождение ОДЗ неравенства есть трудная задача, поэтому перейдем к равносильной ему системе неравенств.

Третье неравенство имеет решение . Первое и второе неравенство справедливо лишь для x из промежутка . Поэтому этот промежуток является множеством решений системы.

Ответ: .

Использование монотонности функций при решении уравнений и неравенств. Это свойство при решении уравнений и неравенств используется чаще всего. Решение уравнений и неравенств с применением монотонности функций основывается на следующих утверждениях:

2.1Пусть f(x) – непрерывная и строго монотонная функция на некотором промежутке. Тогда уравнение вида f(x)=c, где с – данная константа, может иметь не более одного решения на этом промежутке.

2.2.Пусть f(x) и φ(x) непрерывные на некотором промежутке функции. Тогда если f(x) монотонно возрастает, а φ(x) убывает, то уравнение f(x)=φ(x) имеет не более одного решения на этом промежутке.

2.3.Пусть функция f(x) возрастает на своей области определения. Тогда для решения неравенства f(x)>c достаточно решить уравнение f(x)=c. Если x0 – корень, то решениями неравенства будут значения , принадлежащие области определения f(x).

Рассмотрим на примерах, как используются эти утверждения.

Пример 3. Решить неравенство . Существует стандартный прием решения: возведение в квадрат (при условии 0). Мы рассмотрим решение данного неравенства с использованием свойства монотонности. Функция, расположенная в левой части неравенства, монотонно возрастает, в правой части - убывает. Из этого следует, что уравнение имеет не более одного решения, причем если x0 – решение этого уравнения, то при будет , а решением данного неравенства будет . Значение легко подбирается: .

Ответ: .

Пример 4. Решить уравнение

Данное уравнение имеет очевидное решение . Докажем, что других решений нет. Поделим обе части на , получим . Левая часть представляет собой монотонно убывающую функцию. Правая часть функция постоянная. Следовательно, каждое свое значение она принимает один раз, то есть данное уравнение имеет единственное решение.

Ответ: .

Уравнения вида . При решении уравнений данного вида используются следующие утверждения :

пусть область существования функции есть промежуток M и пусть эта функция непрерывна и строго монотонна на этом промежутке. Тогда уравнение будет равносильно системе ;

Страницы: 1 2 3 4 5 6


Другие статьи:

Назначение и функции государственных образовательных стандартов нового поколения
Сегодня все более значимым становится развивающий потенциал образовательных стандартов, обеспечивающий развитие системы образования в условиях изменяющихся запросов личности и семьи, ожиданий общества и требований государства в сфере образования. В настоящее время стандарты должны выступать: 1. ...

Конструирование по образцу
Конструирование по образцу, разработанное Ф.Фребелем, заключается в том, что детям предлагают образцы построек, выполненных из деталей строительного материала и конструкторов, поделок из бумаги и т.п. и, как правило, показывают способы их воспроизведения (рис. 2). В данной форме обучения обеспечив ...

Идеи Яна Амоса Коменского
Коменский сформулировал представления о системе обучения, о разделении школы на ступени, о содержании образования и о круге его “потребностей”, и главное – о методе приспособления образования к природе человека, к разным этапам его развития. Пытаясь применить свои идеи на практике, он натолкнулся ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.centrstar.ru