Использование свойств функций при решении уравнений и неравенств

Страница 5

Пример 7. Решить уравнение .

ОДЗ – множество действительных чисел. Область изменения функции f(x)= ‑ множество Y1=, область изменения функции = ‑ множество Y2=. Тогда Y1∩Y2=={2}. Следовательно, если уравнение имеет решения, то ими могут быть только те значения x, при которых обе функции одновременно принимают значение, равное 2. Функция принимает это значение только один раз, при x=0. Нетрудно убедиться, что f(0)=2.

Ответ: x=0.

Использование свойств четности или нечетности и периодичности функций. Знания учащихся о свойствах четных и нечетных функций, о периодических функциях становятся более глубокими и осознанными, если систематически использовать эти свойства при решении уравнений и неравенств. Кроме того, применение свойств четности или нечетности, периодичности функций способствует рационализации самих решений.

Пусть имеем уравнение или неравенство F(x)=0, F(x)>0 (F(x)<0), где F(x) – четная или нечетная функция. Область определения такой функции симметрична относительно нуля (необходимое условие).

Для любых двух симметричных значений аргумента из области определения четная функция принимает равные числовые значения, а нечетная – равные по абсолютной величине, но противоположного знака значения.

Выводы:

Чтобы решить уравнение F(x)=0, где F(x) – четная или нечетная функция, достаточно найти положительные (или отрицательные) корни, после чего записать отрицательные (или положительные) корни, симметричные полученным. Для нечетной функции корнем будет x=0, если это значение входит в область определения F(x). Для четной функции значение x=0 проверяется непосредственной подстановкой в уравнение.

Чтобы решить неравенство F(x)>0 (F(x)<0), где F(x) – четная функция, достаточно найти решения для x≥0 (или x≤0). Действительно, если решением данного неравенства является промежуток (x1, x2), где x1, x2 – числа одного знака или одно из них равно нулю, то его решением будет и промежуток ( ‑ x2, ‑ x1).

Чтобы решить неравенство F(x)>0 (F(x)<0), F(x) – нечетная функция, достаточно найти его решения для x>0 (или x<0). Действительно, функция F(x) для любого x≥0 (x≤0) из области ее определения может находиться с нулем в одном из трех отношений: «равно», «больше», «меньше». Следовательно, если нам известно, при каких значениях x F(x)≥0 (F(x)≤0), то нам будет известно, при каких значениях x F(x)>0 (F(x)<0) (оставшиеся значения x из области определения). Но если нам известны промежутки знакопостоянства функции F(x) для x>0 (или x<0), то легко записать промежутки знакопостоянства и для x<0 (x>0).

Если функция F(x) – периодическая, то решение уравнения F(x)=0 или неравенства F(x)>0 (F(x)<0) достаточно найти на промежутке, равном по длине периоду функции, после чего записать общее решение. Если периодическая функция еще и четная или нечетная, то решение достаточно найти на промежутке, равном по длине половине периода.

Выводы по параграфу: анализ методической и математической литературы показал, что метод решения уравнений и неравенств с использованием свойств функций используется в школьном курсе математики редко, а в заданиях ЕГЭ и на вступительных экзаменах почти каждый год предлагаются уравнения и неравенства, решение которых упрощается, если применить свойства функций.

Страницы: 1 2 3 4 5 6


Другие статьи:

Анализ программ и учебников, содержащих компоненты полового воспитания
Проблема полового воспитания в школе усугубляется отсутствием четкой сформулированной программы, определившей бы принципы и содержание полового воспитания в школе. И. Борисов составил типологию имеющихся на сегодняшний день различных программ полового воспитания: 1. «Государственная» (федеральна ...

Методические рекомендации к изучению темы "Логарифмические уравнения"
Цели: раскрыть понятие "логарифмическое уравнение"; ознакомить учащихся с основными приёмами и методами решения уравнений этого вида; обеспечить овладение всеми учащимися основными алгоритмическими приёмами решения логарифмических уравнений. Урок 1 "Решение логарифмических уравнени ...

Особенности детского конструирования
В конструировании выделяются два взаимосвязанных этапа: создание замысла и его исполнение. Творчество связано, как правило, больше с созданием замысла. Однако практическая деятельность, направленная на выполнение замысла, не является чисто исполнительской. Особенностью конструкторского мышления да ...

Главные разделы

Copyright © 2021 - All Rights Reserved - www.centrstar.ru