Использование свойств функций при решении уравнений и неравенств

Страница 5

Пример 7. Решить уравнение .

ОДЗ – множество действительных чисел. Область изменения функции f(x)= ‑ множество Y1=, область изменения функции = ‑ множество Y2=. Тогда Y1∩Y2=={2}. Следовательно, если уравнение имеет решения, то ими могут быть только те значения x, при которых обе функции одновременно принимают значение, равное 2. Функция принимает это значение только один раз, при x=0. Нетрудно убедиться, что f(0)=2.

Ответ: x=0.

Использование свойств четности или нечетности и периодичности функций. Знания учащихся о свойствах четных и нечетных функций, о периодических функциях становятся более глубокими и осознанными, если систематически использовать эти свойства при решении уравнений и неравенств. Кроме того, применение свойств четности или нечетности, периодичности функций способствует рационализации самих решений.

Пусть имеем уравнение или неравенство F(x)=0, F(x)>0 (F(x)<0), где F(x) – четная или нечетная функция. Область определения такой функции симметрична относительно нуля (необходимое условие).

Для любых двух симметричных значений аргумента из области определения четная функция принимает равные числовые значения, а нечетная – равные по абсолютной величине, но противоположного знака значения.

Выводы:

Чтобы решить уравнение F(x)=0, где F(x) – четная или нечетная функция, достаточно найти положительные (или отрицательные) корни, после чего записать отрицательные (или положительные) корни, симметричные полученным. Для нечетной функции корнем будет x=0, если это значение входит в область определения F(x). Для четной функции значение x=0 проверяется непосредственной подстановкой в уравнение.

Чтобы решить неравенство F(x)>0 (F(x)<0), где F(x) – четная функция, достаточно найти решения для x≥0 (или x≤0). Действительно, если решением данного неравенства является промежуток (x1, x2), где x1, x2 – числа одного знака или одно из них равно нулю, то его решением будет и промежуток ( ‑ x2, ‑ x1).

Чтобы решить неравенство F(x)>0 (F(x)<0), F(x) – нечетная функция, достаточно найти его решения для x>0 (или x<0). Действительно, функция F(x) для любого x≥0 (x≤0) из области ее определения может находиться с нулем в одном из трех отношений: «равно», «больше», «меньше». Следовательно, если нам известно, при каких значениях x F(x)≥0 (F(x)≤0), то нам будет известно, при каких значениях x F(x)>0 (F(x)<0) (оставшиеся значения x из области определения). Но если нам известны промежутки знакопостоянства функции F(x) для x>0 (или x<0), то легко записать промежутки знакопостоянства и для x<0 (x>0).

Если функция F(x) – периодическая, то решение уравнения F(x)=0 или неравенства F(x)>0 (F(x)<0) достаточно найти на промежутке, равном по длине периоду функции, после чего записать общее решение. Если периодическая функция еще и четная или нечетная, то решение достаточно найти на промежутке, равном по длине половине периода.

Выводы по параграфу: анализ методической и математической литературы показал, что метод решения уравнений и неравенств с использованием свойств функций используется в школьном курсе математики редко, а в заданиях ЕГЭ и на вступительных экзаменах почти каждый год предлагаются уравнения и неравенства, решение которых упрощается, если применить свойства функций.

Страницы: 1 2 3 4 5 6


Другие статьи:

Урок-мюзикл
Урок-мюзикл способствует развитию социокультурной компетенции и ознакомлению с культурами англоязычных стран. Методические преимущества песенного творчества в обучении иностранному языку очевидны. Известно, что в Древней Греции многие тексты разучивались пением, а во многих школах Франции это пра ...

Специфика философского понимания явлений специальной педагогики
Философская рефлексия обращена, прежде всего на существенные, основополагающие вопросы, поэтому на философском уровне обобщения могут быть рассмотрены наиболее важные, концептуальные проблемы, перспективы развития специальной педагогики, для осмысления которых нужна координация усилий многих специ ...

Общие педагогические способности
Многочисленные психолого-педагогические исследования, проведенные Н.В. Кузьминой, показали, что саморазвитие педагогов обеспечивается достаточно высоким уровнем сформированности у них таких общих способностей, как: - гностические; - проектировочные; - конструктивные; - коммуникативные; - орга ...

Главные разделы

Copyright © 2021 - All Rights Reserved - www.centrstar.ru