Цели: раскрыть понятие "логарифмическое уравнение"; ознакомить учащихся с основными приёмами и методами решения уравнений этого вида; обеспечить овладение всеми учащимися основными алгоритмическими приёмами решения логарифмических уравнений.
Урок 1 "Решение логарифмических уравнений".
Тему лучше изложить лекционно. Содержание лекции может быть следующим:
Простейшим логарифмическим уравнением (то есть уравнением, содержащим неизвестное под знаком логарифма) является
, где
,
.
Логарифмическая функция возрастает (или убывает) на промежутке
и принимает на этом промежутке все действительные значения. По теореме о корне: пусть функция
возрастает (или убывает) на промежутке
, число
- любое из значений, принимаемых
на этом промежутке. Тогда уравнение
имеет единственный корень в промежутке
. Отсюда следует, что для любого
данное уравнение имеет и притом только одно решение. Из определения логарифма числа сразу следует, что
является таким решением.
То есть если
,
, то корень уравнения
равен
.
Основной способ решения логарифмических уравнений - это потенцирование, в результате чего получаем обычное алгебраическое уравнение. Найденные корни необходимо проверить, так как возможны случаи появления посторонних корней.
При решении логарифмических уравнений и неравенств используйте свойства логарифмической функции. Для этого левую и правую части представляйте в виде логарифмов с одинаковыми основаниями. Необходимым шагом в решении является учёт области определения логарифмической функции.
Теорема: Уравнение
, где
,
, равносильно системе:
состоящей из уравнения и двух неравенств.
(В этой системе можно опустить одно из неравенств, так как каждое из них вытекает из уравнения и другого неравенства).
Таким образом для решения уравнения
при
,
нужно:
1) решить уравнение f (x) =g (x);
2) из найденных корней отобрать те, которые удовлетворяют неравенству f (x) >0 (или, то же самое, неравенству g (x) >0; обычно используют более простое из этих неравенств), а остальные корни отбросить, так как они являются для данного уравнения посторонними.
Итак, логарифмическим называется уравнение, содержащее неизвестную величину под знаком логарифма.
Выделяют следующие основные методы решения логарифмических уравнений:
На основании определения логарифма.
Так решаются уравнения вида
.
Приведём пример такого уравнения и решим его.
Пример: Решить уравнение
.
Решение: ОДЗ:
.
По определению логарифма имеем:
(по формуле
).
Отсюда:
Проверка:
- верно.
- верно.
Ответ:
Метод потенцирования.
Суть метода заключается в следующем: с помощью формул уравнение привести к виду
. Это уравнение (при
,
) равносильно системе
Задачи специальной педагогики в подготовке ребёнка с особыми
образовательными потребностями и социально-культурной интеграции
Специальная педагогика, определяя конечные и ближайшие цели и задачи специального образования, его содержание, организацию, методы и приемы коррекционно-педагогической помощи, также учитывает социо-культурно значимую идею независимого образа жизни. Она изучает качественное своеобразие проблем соци ...
Педагогическая теория Коменского. Структура и содержание «Великой дидактики»
Центральным трудом педагогической теории Яна Амоса Коменского по праву считается «Великая дидактика». Задуманная им еще в молодости, она вынашивалась долгие годы, обрастала различными дополнениями и приложениями. Для своего времени она представляла собой поистине революционный учебник педагогичес ...
Терапия театральным искусством
Терапия театральным искусством (имаготерапия) – социально-культурная реабилитационная технология, способствующая творческому развитию, социальной активизации, приобретению коммуникативных навыков, психологическому балансу, апробации социальных ролей с помощью драматизации, импровизации.
1.
...