Методические рекомендации к изучению темы "Логарифмические уравнения"

Страница 1

Цели: раскрыть понятие "логарифмическое уравнение"; ознакомить учащихся с основными приёмами и методами решения уравнений этого вида; обеспечить овладение всеми учащимися основными алгоритмическими приёмами решения логарифмических уравнений.

Урок 1 "Решение логарифмических уравнений".

Тему лучше изложить лекционно. Содержание лекции может быть следующим:

Простейшим логарифмическим уравнением (то есть уравнением, содержащим неизвестное под знаком логарифма) является , где , .

Логарифмическая функция возрастает (или убывает) на промежутке и принимает на этом промежутке все действительные значения. По теореме о корне: пусть функция возрастает (или убывает) на промежутке , число - любое из значений, принимаемых на этом промежутке. Тогда уравнение имеет единственный корень в промежутке . Отсюда следует, что для любого данное уравнение имеет и притом только одно решение. Из определения логарифма числа сразу следует, что является таким решением.

То есть если , , то корень уравнения равен .

Основной способ решения логарифмических уравнений - это потенцирование, в результате чего получаем обычное алгебраическое уравнение. Найденные корни необходимо проверить, так как возможны случаи появления посторонних корней.

При решении логарифмических уравнений и неравенств используйте свойства логарифмической функции. Для этого левую и правую части представляйте в виде логарифмов с одинаковыми основаниями. Необходимым шагом в решении является учёт области определения логарифмической функции.

Теорема: Уравнение , где , , равносильно системе:

состоящей из уравнения и двух неравенств.

(В этой системе можно опустить одно из неравенств, так как каждое из них вытекает из уравнения и другого неравенства).

Таким образом для решения уравнения при , нужно:

1) решить уравнение f (x) =g (x);

2) из найденных корней отобрать те, которые удовлетворяют неравенству f (x) >0 (или, то же самое, неравенству g (x) >0; обычно используют более простое из этих неравенств), а остальные корни отбросить, так как они являются для данного уравнения посторонними.

Итак, логарифмическим называется уравнение, содержащее неизвестную величину под знаком логарифма.

Выделяют следующие основные методы решения логарифмических уравнений:

На основании определения логарифма.

Так решаются уравнения вида .

Приведём пример такого уравнения и решим его.

Пример: Решить уравнение .

Решение: ОДЗ: .

По определению логарифма имеем: (по формуле ).

Отсюда:

Проверка: - верно.

- верно.

Ответ:

Метод потенцирования.

Суть метода заключается в следующем: с помощью формул уравнение привести к виду . Это уравнение (при , ) равносильно системе

Страницы: 1 2 3 4


Другие статьи:

Профильный экзамен по математике
К индивидуальному подходу в образовании в настоящее время устремлены единые государственные экзамены. В настоящее время ЕГЭ разработан в расчёте на выпускников школы, изучающих математику 5 часов в неделю. Структура экзаменационных заданий такова: Часть 1 Часть 2 Часть 3 Общее чис ...

Понятие эстетического воспитания школьников старших классов
эстетический декоративный искусство школа Эстетическое воспитание основывается на природных возможностях эстетического развития человека. Однако эти потенциальные возможности превращаются в реальные способности только благодаря воспитанию. Можно иметь безукоризненный слух и не слышать музыку Бетх ...

Методы, принципы, факторы и условия, активизирующие педагогическое воздействие учителя начальных классов
Для того чтобы осуществлять многогранную задачу воспитания, вовлекать детей в целесообразную деятельность и систему отношений, необходим богатый арсенал средств и методов педагогического воздействия, способных мобилизовать, организовать, активизировать деятельность воспитанников, просветить их соз ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.centrstar.ru