В отличие от геометрических курсов, в которых понятие движения положено в их основу, в данном учебнике такие виды движения, как симметрия относительно точки и относительно прямой, служат для доказательства теорем, а такие виды движения, как поворот и параллельный перенос являются объектом изучения.
В первом пункте вводится понятие движения: движением называется такое преобразование плоскости, которое не меняет расстояние между парами точек, т.е. если точки А и В в результате движения переходят в точки А’ и В’, то АВ = А’В’. Далее теорема 12.1. (основное свойство движений): результатом двух последовательных движений плоскости является движение плоскости – приводится доказательство теоремы, а затем рассматривают две основные теоремы о движении плоскости также с доказательствами. Теорема 12.2 (основной способ задания движения): любое движение плоскости полностью задается движением трех точек плоскости, не лежащих на одной прямой. И теорема 12.3 (о возможности представления любого движения через осевые симметрии): любое движение плоскости может быть получено с помощью не более чем трех осевых симметрий.
В следующем пункте рассматривают виды движений плоскости. Теорема 12.4. (о представлении параллельного переноса в виде двух симметрии): в результате двух последовательных осевых симметрии с параллельными осями любая точка А плоскости переходит в такую точку А’, что вектор АА’ постоянен для всех точек плоскости.
Такое преобразование называется параллельным переносом. Сам вектор АА’ называется вектором параллельного переноса.
И затем теорема 12.5 (о представлении поворота в виде двух симметрий): пусть две прямые и
на плоскости пересекаются в точке О и образуют между собой угол α (α ≤ 90). В результате двух последовательных симметрии относительно прямых
и
мы получим поворот на угол 2α вокруг точки О. При этом направление поворота то же, что и у поворота на угол α, переводящего прямую
в прямую
с доказательством.
Здесь же рассматриваются такие темы как «Три осевые симметрии» и «Скользящая симметрия», отмеченные звездочкой, т.е. предназначены для углубленной подготовки. Задачный материал дифференцирован по уровню сложности.
К учебнику прилагается рабочая тетрадь В.Б. Алексеева, В.Я. Галкина и др., в которую включена тема «Преобразования плоскости». В тетради разобраны многие задачи, имеющиеся в учебнике, а также представлены другие задачи. Работа с тетрадью рекомендована строго после изучения материалов учебника. Задачи, содержащиеся в тетради, предполагают разную степень участия ученика в процессе решения. Решения некоторых задач приведены полностью, их надо внимательно прочитать и осознать, для того, чтобы следующие задачи решить по аналогии или с использованием похожих соображений. В решении большинства задач имеются пропуски, которые нужно заполнить: привести ссылку на формулы или теоремы, несложные вычисления. При этом оставленные отдельно слова и фразы помогут понять логику решения. Задания по теме «Преобразования плоскости» выделены в два занятия. В каждом занятии представлены задачи от простых, закрепляющих основные геометрические понятия и факты, до достаточно сложных, что помогает организовать работу учеников, как по базовой программе, так и по программе углубленного изучения движений.
Характеристика начального этапа
Под начальным этапом в средней школе понимается период изучения иностранного языка, позволяющий заложить основы коммуникативной компетенции необходимые и достаточные для их дальнейшего развития и совершенствования в курсе изучения этого предмета. В данной исследовательской работе к начальному этап ...
Формы, методы и средства обучения творческим работам с
использованием информационных технологий
В данном параграфе представлены формы, методы и средства обучения работам с графическими редакторами.
Формы обучения
Формы организации обучения представляют собой внешнее выражение согласованной деятельности учителя и учеников, осуществляемой в установленном порядке и определенном режиме. В рамк ...
Разработка урока-практикума для 10-го класса по теме «Решение
тригонометрических уравнений»
Дата: 22.02.2008 г.
Школа № 49. Класс 10 «Б».
Общая тема: «Тригонометрические функции».
Тема урока: «Решение тригонометрических уравнений»
Тип урока: Урок-практикум.
Цели:
Закрепить и применить знания при решении задач по теме: «Решение тригонометрических уравнений».
Развивать представления ...