Анализ современных учебников, рабочих тетрадей и дидактических материалов по геометрии

Информация о педагогике » Использование компьютерных технологий в изучении наглядной геометрии » Анализ современных учебников, рабочих тетрадей и дидактических материалов по геометрии

Страница 1

Метод геометрических преобразований – метод обоснования некоторых отношений между объектами евклидовой геометрии, например, равенство, параллельность, подобие и др. Для доказательства теорем и решения задач (в частности, задач на построение) метод геометрических преобразований (как частный случай математического моделирования) выглядит следующим образом:

1) Выбрать геометрическое преобразование, которое позволит обосновать наличие указанного отношения между объектами евклидовой геометрии;

2) Выполнить выбранное преобразование так, чтобы один объект (или его часть) переходил в другой (новый, вспомогательный) объект, более удобный для исследования (или построения);

3) Исследовать полученный новый (вспомогательный) объект и его свойства;

4) Обосновать наличие указанного отношения между объектами с помощью свойств выбранного преобразования.

Частные случаи метода геометрических преобразований – методы осевой и центральной симметрии, поворота, параллельного переноса часто используют для обоснования равенства фигур, параллельности и перпендикулярности, отыскания кратчайшего расстояния.

У авторов школьных учебников по геометрии геометрические преобразования занимают разное место по объему и уровню строгости изложения.

В учебнике А.В. Погорелова «Геометрия 7-11» для общеобразовательных учреждений преобразованиям отведен один параграф «§9. Движение». Эта тема изучается в 8 классе. Основная цель изучения темы познакомить учащихся с примерами преобразований геометрических фигур. Поскольку в дальнейшем движения не применяются в качестве аппарата для решения задач и изложения теории, изучение материала рекомендуют дать в ознакомительном порядке, то есть не требуется от учащихся воспроизведение доказательств теорем, умения в овладении методом геометрических преобразований и применения его при решении задач. Основные виды движений – симметрия относительно прямой и точки, поворот, параллельный перенос – учащиеся должны усвоить при решении следующих задач:

1. Даны точки A и B. Постройте точку B’, симметричную точке B относительно точки A.

2. При симметрии относительно некоторой точки точка X переходит в точку X’. Постройте точку, в которую при этой симметрии переходит точка Y.

3. Даны точки A, B, C. Постройте точку C’, симметричную точке С относительно прямой AB.

4. Чему равны координаты точки, симметричной точке (-3; 4) относительно: 1) оси x; 2) оси y; 3) начала координат?

5. 1) Постройте точку А1, в которую переходит точка А при повороте около точки О на угол 60° по часовой стрелке.

2) Постройте фигуру, в которую переходит отрезок АВ при повороте около точки О на угол 60° по часовой стрелке.

6. Постройте фигуру, в которую переходит треугольник АВС при повороте его около вершины С на угол 60°.

7. Даны точки А, В, С. Постройте точку С’, в которую переходит точка С при параллельном переносе, переводящем точку А в В.

8. Параллельный перенос задается формулами х’ = х + 1, у’ = у - 1. В какие точки при этом параллельном переносе переходят точки (0; 0), (1; 0), (0; 2)?

9. Найдите величины a и b в формулах параллельного переноса х’ = х + а, у’ = у + b, если известно, что:

1) точка (1; 2) переходит в точку (3; 4); 2) точка (2; -3) – в точку (-1; 5); 3) точка (-1; -3) – в точку (0; -2).

В отличие от симметрии и поворота определение параллельного переноса дается с помощью формул, указывающих связь между координатами точки и ее образа при данном параллельном переносе. Такое определение выглядит формальным, а не конструктивным, как у предыдущих видов движения, однако, если проиллюстрировать на рисунке эти формулы, то можно заметить, что они тоже дают способ построения точки, в которую переходит данная точка при параллельном переносе: она смещается на а вдоль оси абсцисс и на b вдоль оси ординат. Это преобразование дает еще один пример движений, причем все свойства движений для параллельного переноса являются, видимо, самыми очевидными для учащихся.

Страницы: 1 2 3 4 5 6


Другие статьи:

Правила игры для дошкольников
Цель игры. Игра проводится между командами по пять игроков. Цель каждой команды в игре – забросить как можно мячей в корзину соперника, соблюдая при этом правила игры. Участники игры. Каждая команда состоит из 5 играющих на площадке и нескольких запасных. Один из игроков - капитан. Игроки одной ...

Верстка издания
Приступать к верстке книги следует после создания предварительного макета и разработки основных элементов ее оформления. Верстальщик должен представлять, что получится в результате его работы, поскольку необходимо создать такой макет для верстки книги, который не только соответствует правилам верс ...

Изучение дислалии, как формы нарушения звукопроизношения, в работах Гриншпуна Б.М
Отечественный дефектолог, большое внимание уделял развитию термина «дислалия». Гриншпун Б.М., как представитель современного этапа логопедии, считал, что для логопедии как педагогической отрасли знаний важным является выделение таких признаков нарушения, которые существенны для самого логопедичес ...

Главные разделы

Copyright © 2021 - All Rights Reserved - www.centrstar.ru