Анализ школьных учебников и программ по теме «Решение тригонометрических уравнений»

Информация о педагогике » Методические особенности изучения тригонометрических уравнений в общеобразовательной школе » Анализ школьных учебников и программ по теме «Решение тригонометрических уравнений»

Страница 2

Простейшие тригонометрические уравнения (2 часа). Уравнения, сводящиеся к простейшим заменой неизвестного (2 часа), Применение основных тригонометрических формул для решения уравнений (1час), Однородные уравнения (1 час).

Невооруженным глазом можно видеть, что на изучение тригонометрических уравнений отводится недостаточное количество времени, более того, простейшим тригонометрическим уравнениям не уделяется должного внимания, хотя основой для решения любого тригонометрического уравнения служит умение решать именно простейшие тригонометрические уравнения.

Отметим также, что в данном учебнике совсем не рассматриваются задачи, в которых требуется осуществить отбор корней.

Большое внимание уделяется понятиям арксинус, арккосинус, арктангенс и арккотангенс, но, к сожалению, авторы не поясняют учащимся с какой целью они вводят данные понятия.

III. Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров, Н.Е. Федорова, М.И. Шабунин «Алгебра и начала анализа 10-11 класс».

На изучение темы отводится 18 часов.

Уравнение , . Уравнение . Решение тригонометрических уравнений. Примеры решения простейших тригонометрических неравенств.

Основная цель – сформировать умение решать простейшие тригонометрические уравнения, познакомить учащихся с некоторыми приемами решения тригонометрических уравнений.

Изучение темы начинается с рассмотрения конкретных простейших уравнений, решение которых иллюстрируется на единичной окружности, что хорошо подготовлено материалом главы «Тригонометрические формулы».

Понятия арксинуса, арккосинуса, арктангенса вводятся до знакомства с обратными тригонометрическими функциями (тригонометрические функции изучаются в 11 классе) и иллюстрируются также на единичной окружности. В дальнейшем не следует уделять много внимания упражнениям на нахождение значений и использование свойств арксинуса, арккосинуса, арктангенса: все это будет закрепляться в ходе решения уравнений. При решении уравнений полезно иллюстрировать нахождение корней на единичной окружности: это позволит осознанно применять формулы корней.

Решение более сложных тригонометрических уравнений рассматривается на примерах уравнений, сводящихся к квадратным, уравнений вида , уравнений, решаемых разложением левой части на множители.

Материал в учебнике соответствует обязательному минимуму обучения, весьма доступен для учащихся 10 класса. Можно даже заметить, что авторы при решении уравнений предлагают иллюстрировать нахождение корней на единичной окружности, в дальнейшем это позволит избежать вопросов о количестве корней тригонометрического уравнения и частично ликвидирует трудность в восприятии учащимися таких элементов, как и . Однако у ученика 10 класса так и остаются невыясненными вопросы, связанные с понятием арксинуса, арккосинуса и арктангенса, с появлением периода в записи ответа к тригонометрическому уравнению, с появлением множителя и, наконец, проблема отбора корней так и остается открытой.

Т.е. мы видим, что в учебнике Ш.А. Алимова и др. решенным является вопрос учеников о количестве корней тригонометрического уравнения, но при изложении материала по тригонометрии мы снова сталкиваемся с известной схемой изложения материала «функция – преобразования – уравнения». Т.е. снова формулы выведены на первое место, а простейшим уравнениям внимания уделено недостаточно.

IV. Ю.М. Колягин, Ю.В. Сидоров, М.Ю. Ткачева, Н.Е. Федорова, М.И. Шабунин «Алгебра и начала анализа 10 класс».

Количество часов, отведенных на тему «Тригонометрические уравнения», совпадает с количеством часов, отведенных на данную тему в учебнике Ш.А. Алимова и др. Рассмотрим содержание учебного материала.

Уравнения , . Уравнения , . Решение тригонометрических уравнений. Различные приемы решения тригонометрических уравнений. Уравнения, содержащие корни и модули. Системы тригонометрических уравнений. Появление посторонних корней и потеря корней тригонометрических уравнений.

Страницы: 1 2 3 4 5


Другие статьи:

Понятие личности и её развития
В каждой науке о человеке, к числу которых принадлежит и педагогика, «личность» является ключевым понятием. Поэтому очень важно точно разобраться в определении этого понятия. Итак, что в классическом понимании включает в себя слово «личность»? Личность - это осознание себя, внешнего мира и места ...

Работа над эскизами
Разрабатывая эскизы комплекта женских аксессуаров главной задачей было создание композиционно единого, цельного ансамбля. В рамках стилевого единства всегда возможно весьма значительное варьирование композиций по их геометрическим и физическим характеристикам таким образом, чтобы каждый из компон ...

Методы логопедического воздействия
Логопедическое воздействие, как основа построения индивидуальных логопедических занятий, осуществляется различными методами. Используется метод обучения, рассматриваемый в педагогике, как способ совместной деятельности педагога и детей, направленный на освоение детьми знаний, навыков и умений, на ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.centrstar.ru