При рассмотрении этого параграфа мы будем использовать материал следующих учебников по алгебре и началам анализа: А.Г. Мордкович "Алгебра и начала анализа 10-11», Ю.М. Колягин и др. «Алгебра и начала анализа 10 кл.», А.Н. Колмогоров и др. «Алгебра и начала анализа 10-11 кл.», М.И. Башмаков «Алгебра и начала анализа 10-11 кл.», Ш.А. Алимов «Алгебра и начала анализа 10-11 кл». Анализ учебников будет осуществляться по следующим параметрам:
Количество часов, отводимых на изложение темы.
Содержание материала.
Соответствие обязательному минимуму обучения, зафиксированному в программе по математике.
Соответствие материала возрасту учащихся (доступность материала).
Понятность излагаемого материла.
I. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын, Б.М. Ивлев, С.И. Шварцбурд «Алгебра и начала анализа 10-11 класс».
На изложение темы «Тригонометрические уравнения» здесь отводится 14 часов. Рассмотрим содержание материала.
Арксинус, арккосинус и арктангенс числа. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений, систем уравнений.
Основная цель – сформировать у учащихся умение решать простейшие тригонометрические уравнения и ознакомить с основными приемами решения тригонометрических уравнений.
Введению понятий арксинуса, арккосинуса и арктангенса предшествует рассмотрение теоремы о корне. Основное внимание здесь нужно уделить разъяснению смысла указанных выше понятий, а также формированию умения находить табличные значения, что необходимо для безошибочного решения тригонометрических уравнений.
Вывод формул корней простейших тригонометрических уравнений основывается на изученных свойствах соответствующих функций.
Материал, представленный в учебнике, соответствует обязательному минимуму обучения, однако для учащихся 10 класса материал, представленный в учебнике, является достаточно трудным для понимания, т.к. здесь мы имеем чересчур сжатое изложение.
Более того, в данном учебнике мы сталкиваемся с достаточно известной схемой изложения материала по тригонометрии – сначала в головы учеников пытаются «вбить» все известные формулы курса тригонометрии, а потом научить решать тригонометрические уравнения. В результате мы получаем достаточно банальную ситуацию: тригонометрические уравнения и преобразования тригонометрических выражений так и остаются в голове учащихся на разных берегах реки. Получается, что, пользуясь схемой изложения материала, предложенной в данном учебнике, мы изучаем с учащимися формулы ради формул. Мы получаем обучение без развития. Для ученика 10 класса так и остаются невыясненными (после изучения материала по данному учебнику) следующие факты:
Что же все-таки это такое – арксинус, арккосинус и арктангенс числа?
Почему раньше при решении уравнения мы получали конечное число корней, а теперь – бесконечное?
Откуда в записи корней тригонометрического уравнения появился «хвост» или . Распространенная ошибка учащихся при записи корней уравнения - ошибка следующего вида: , что вполне очевидно, ведь - функция периодическая и период этой функции равен .
Что такое в записи корней уравнения и почему его нет при записи корней уравнения , а вместо этой «страшной» конструкции при решении уравнения получаем
Здесь, кстати, мы сталкиваемся с ошибкой такого рода:
Наконец, возникают ситуации, когда при решении тригонометрического уравнения нам необходимо осуществить отбор корней, а вот эти ситуации не рассматриваются в предложенном учебнике.
II. С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин «Алгебра и начала анализа 10 класс»
На изучение темы «Тригонометрические уравнения» отводится 7 часов.
Проекты по реорганизации народного образования, созданные во время буржуазной французской революции
В 70—80-х годах XVIII века во Франции создалась революционная ситуация.
В недрах феодального общества выросли и созрели формы нового, капиталистического уклада. Однако феодально-абсолютистский режим задерживал развитие капитализма, сельского хозяйства, промышленности и торговли. Французская буржу ...
Рекомендации по формированию и активизации познавательной деятельности
учащихся на уроках в специальных школах VIΙI вида
I. Основа активности учебно-познавательной деятельности:
- адаптация, приспособление детской психологии к созданным на уроке условиям;
- стимулирование учебно-познавательной деятельности учащихся;
- преодоление противоречий между познавательными и практическими заданиями, выдвигаемыми ходом обу ...
Классификация уроков в зависимости от решаемых задач
Перед каждым уроком обязательно должны ставиться конкретные задачи. По данным учебника Б. Ашмарина, в методике физического воспитания все задачи принято делить на три группы, исходя из их направленности: образовательные, оздоровительные и воспитательные. Педагогические задачи необходимо формулиров ...