Приемы устных вычислений, основанные на законах и свойствах арифметических действий

Информация о педагогике » Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике » Приемы устных вычислений, основанные на законах и свойствах арифметических действий

Страница 5

Результат ряда умножений и делений не меняется от перемены порядка членов данного ряда (разумеется, что каждый член ряда остается в своей прежней роли, иначе говоря, переносится на другое место вместе с написанным перед ним знаком действия).

2. Умножение числа на частное.

1) (если данное число умножить на какое-нибудь число (не равное нулю) и затем полученное произведение разделить на это же число, то данное число остаются без изменения) = (сочетательность умножения) = (если данное число разделить, на какое-нибудь число и затем полученное частное умножить на это же число, то данное число останется без изменения) = 800: 8 = 100 (порядок действий). Итак,.

Чтобы умножить число на частное, можно умножить его на делимое, и полученное произведение разделить на делитель.

2).

3. Деление числа на произведение.

1) (если данное число разделить на какое-нибудь число и полученное частное умножить на то же самое число, то данное число останется без изменения) = (объяснение то же) = (переместительность умножения) = (сочетательность умножения) = 1890: 9: 7 (если данное число умножить на какое-нибудь число (не равное нулю) и затем полученное произведение разделить на это же число, то данное число останется без изменения) = 210: 7 = 30 (порядок действий).

Чтобы разделить число на произведение нескольких чисел, достаточно разделить его на первый сомножитель, полученное частное – на второй, новое частное – на третий и т.д. до конца.

2) 8,16: ( = 8,16: 0,8: 0,03 = 10,2: 0,03=340.

К указанным способам близки по обоснованию приема следующие: разложение делителя на множители и замена нескольких делителей их произведением.

3) 1890: 54 = 1890: (= (1890: 9): 3: 2 = (210: 3): 2 = 70: 2 = 35.

4) 2800: 25: 8 = 2800: (= 2800: 200 = 14.

4. Деление произведения на число.

(так как 3200 = ) = : 8 (порядок действий) = (переместительность умножения) = (сочетательность умножения) = (если данное число умножить на какое-нибудь число (не равное нулю) и затем полученное произведение разделить на это же число, то данное число останется без изменения) = (порядок действий).

Чтобы разделить произведение нескольких чисел на какое-нибудь число, достаточно разделить на это число один из сомножителей, оставив другие без изменения.

5. Деление произведения нескольких чисел на другое произведение.

(следствие сочетательного закона) = (переместительность умножения (сочетательность умножения) = (переместительность) = (деление произведения на число) = 1680 (умножаем полученные числа).

Страницы: 1 2 3 4 5 6


Другие статьи:

Система упражнений по теме «Треугольники и четырехугольники»
Данная система упражнений основывается на принципах: Принцип наглядно-деятельностной геометрии. Принцип познания законов природы средствами геометрии. Принцип развития образного мышления и изобразительных умений. Согласно учебнику по математике для 5 класса общеобразовательных учебных заведени ...

Общая характеристика форм построения занятий
Целостный процесс физического воспитания любых контингентов населения практически осуществляется путем последовательного проведения отдельных занятий физическими упражнениями. Являясь относительно законченной частью, очередным и самостоятельным звеном этого процесса, каждое занятие должно быть свя ...

Принципы адаптации диалоговой обучающей системы Фобус к образовательному процессу
Известно, что обучающий эффект в компьютерных системах учебного назначения может достигаться за счет мультимедийных и диалоговых средств. Достоинство диалоговых систем заключаются в деятельностном подходе к обучению, достоинства которого можно считать признанными. В обучающей системе Фобус основны ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.centrstar.ru