Приемы устных вычислений, основанные на законах и свойствах арифметических действий

Информация о педагогике » Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике » Приемы устных вычислений, основанные на законах и свойствах арифметических действий

Страница 2

2‑й случай.

2) (если из какого-либо числа вычесть и затем прибавить одно и то же число, то данное число не изменится) (первый случай переместительности членов ряда сложений и вычитаний) (если к какому-либо числу прибавить и затем вычесть одно и то же число, то данное число не изменится) . Итак, .

2. Прибавление разности к числу (первый случай сочетательности членов ряда сложений и вычитаний).

(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится) (сочетательный закон) (производим сложение и вычитание). Итак, .

При решении подобных примеров применяется следующее правило: чтобы к числу прибавить разность, достаточно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.

В этом случае правило может быть сформулировано так: чтобы к числу прибавить разность, достаточно из данного числа вычесть вычитаемое и к полученному числу прибавить уменьшаемое.

3. Вычитание из числа суммы (второй случай сочетательности членов ряда сложений и вычитаний).

(если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число не изменится) (на том же основании) = (переместительный и сочетательный законы) (если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится) . Итак, .

Чтобы из числа вычесть сумму, достаточно вычесть из него одно за другим каждое слагаемое.

4. Вычитание из числа разности (третий случай сочетательности членов ряда сложений и вычитаний).

1) (если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число останется без изменения) (на том же основании) (переместительность членов ряда сложений и вычитаний) (сочетательность членов ряда сложений и вычитаний) (если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится) = . Итак, .

Чтобы из числа вычесть разность, достаточно вычесть уменьшаемое и затем прибавить вычитаемое.

2) (вычитание из числа разности) (переместительность членов ряда сложений и вычитаний) (сочетательность суммы) (выполняем сложение и вычитание полученных чисел).

Таким образом, чтобы из числа вычесть разность, достаточно прибавить к нему вычитаемое и затем отнять уменьшаемое. Так как в математике нельзя из меньшего числа вычитать большее, то в случае, когда уменьшаемое больше числа, из которого вычитается разность, применить можно лишь второе из этих правил. Во всех остальных случаях выбираем то правило вычитания из числа разности, которое дает более быстрые и простые вычисления.

Страницы: 1 2 3 4 5 6


Другие статьи:

Основные функции внимания
Внимание в жизни человека и деятельности человека выполняет много функций. Оно активизирует нужные и тормозит ненужные в данный момент психические физиологические процессы, способствует организованному и целенаправленному отбору поступающей в организм в соответствии с его актуальными потребностями ...

Виды внимания
Наиболее простым видом внимания является непроизвольное. Непроизвольным называют такой вид внимания, который возникает у человека без сознательно поставленной цели и волевого усилия. Часто такое внимание выступает в единстве с ориентировочным рефлексом. Ученик уронил книгу, с громким стуком она у ...

Анализ урока производственного обучения
Специальность: штукатур, маляр, плиточник. Проводил: Процко Е.И. Тема урока: приёмы набрасывания раствора из сокола. Цель урока: v Обучающая: освоить приемы набрасывания раствора с помощью сокола. v Развивающая: развить у учащихся творческого подхода к выполняемой работе, в устранении ошибок. ...

Главные разделы

Copyright © 2024 - All Rights Reserved - www.centrstar.ru