2‑й случай.
2) (если из какого-либо числа вычесть и затем прибавить одно и то же число, то данное число не изменится)
(первый случай переместительности членов ряда сложений и вычитаний)
(если к какому-либо числу прибавить и затем вычесть одно и то же число, то данное число не изменится)
. Итак,
.
2. Прибавление разности к числу (первый случай сочетательности членов ряда сложений и вычитаний).
(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится)
(сочетательный закон)
(производим сложение и вычитание). Итак,
.
При решении подобных примеров применяется следующее правило: чтобы к числу прибавить разность, достаточно прибавить к нему уменьшаемое и из полученной суммы вычесть вычитаемое.
В этом случае правило может быть сформулировано так: чтобы к числу прибавить разность, достаточно из данного числа вычесть вычитаемое и к полученному числу прибавить уменьшаемое.
3. Вычитание из числа суммы (второй случай сочетательности членов ряда сложений и вычитаний).
(если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число не изменится)
(на том же основании) =
(переместительный и сочетательный законы)
(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится)
. Итак,
.
Чтобы из числа вычесть сумму, достаточно вычесть из него одно за другим каждое слагаемое.
4. Вычитание из числа разности (третий случай сочетательности членов ряда сложений и вычитаний).
1) (если из какого-нибудь числа вычесть и затем прибавить одно и то же число, то данное число останется без изменения)
(на том же основании)
(переместительность членов ряда сложений и вычитаний)
(сочетательность членов ряда сложений и вычитаний)
(если к какому-нибудь числу прибавить и затем вычесть одно и то же число, то данное число не изменится) =
. Итак,
.
Чтобы из числа вычесть разность, достаточно вычесть уменьшаемое и затем прибавить вычитаемое.
2) (вычитание из числа разности)
(переместительность членов ряда сложений и вычитаний)
(сочетательность суммы)
(выполняем сложение и вычитание полученных чисел).
Таким образом, чтобы из числа вычесть разность, достаточно прибавить к нему вычитаемое и затем отнять уменьшаемое. Так как в математике нельзя из меньшего числа вычитать большее, то в случае, когда уменьшаемое больше числа, из которого вычитается разность, применить можно лишь второе из этих правил. Во всех остальных случаях выбираем то правило вычитания из числа разности, которое дает более быстрые и простые вычисления.
Видеоурок
Овладеть коммуникативной компетенцией на английском языке, не находясь в стране изучаемого языка, дело весьма трудное. Поэтому важной задачей учителя является создание реальных и воображаемых ситуаций общения на уроке иностранного языка с использованием различных приемов работы.
Не менее важным с ...
Типы элективных курсов
В научно-методической литературе условно выделяют три типа элективных курсов:
I. Предметные курсы, задача которых - углубление и расширение знаний по предметам, входящих в базисный учебный школы.
В свою очередь, предметные элективные курсы можно разделить на несколько групп.
Элективные курсы по ...
Формирование произношения учащихся 5 класса с использованием аутентичного
текста
Знакомство с многочисленными правилами чтения букв и буквосочетаний английского алфавита является одной из самых важных задач обучения предмету.
Во время прохождения практики в 5 А классе, работая по учебнику "Happy English I" (Т.Б. Клементьевой и Б. Монка), я попробовала в рамках прогр ...