Комментарии к уроку
Данный урок является уроком изучения нового материала по теме «Квадратный корень из произведения». Его основная цель - вывести формулу квадратного корня из произведения и сформировать опыт в выполнении исследовательских заданий.
Урок разработан таким образом, что учащиеся, путем исследования, самостоятельно выводят формулу квадратного корня из произведения и ее свойства. На уроке используются такие приемы коллективной формы обучения, как работа в динамических парах и самостоятельное проведение исследования.
Оборудование: «кросснамбер»; карточки с заданиями.
Подготовка к изучению нового материала – 7 мин.
Учитель: «Для начала – разминка. Она у нас сегодня тоже не совсем обычная.
Кросснамбер:
Рис. 7
Все любят разгадывать кроссворды, а мы займемся разгадыванием «кросснамбера», в нем все наоборот – даны буквы, а вам предстоит найти цифры и записать их под этими буквами:
По горизонтали:
Б) 112 + 10
Г) 172
Д) 10
Е) 6,63 102
Ответы: Б) 52; Г) 289; Д) 190; Е) 663.
По вертикали:
А)
Б) 14 =
В) 102 +
Ж) ()2
Ответы: А) 15; Б) 7; В)113; Ж) 64.
2. Учитель: «Очень хорошо, что вы знаете, что такое квадратный корень. Попросим одного ученика записать определение на доске, а в это время проверим, верны ли данные равенства (записаны на доске), и ответим на вопрос:
1) Почему?
= 4;
= – 4;
= – 3;
= 3;
= |– 5|;
Итак, какой вывод можно сделать? (Чтобы число являлось квадратным корнем другого числа, необходимо: 1) ; 2) ).
Таким образом, учащиеся самостоятельно вывели данные свойства.
Изучение нового материала – 15 мин.
Учитель: «А теперь приступим к нашей исследовательской работе: будем выводить новую формулу.
Для этого надо выполнить следующие задания. Учащиеся работают в динамических парах.
Вычислить:
1 вариант.
а) ; б) ; в) .
2 вариант.
а) ; б) ; в) .
(Ответы: а) 8; б) 15; в) 4).
Вопросы к классу – Что вы заметили при решении заданий?
Как можно найти корень из произведения?
Когда мы применяем это свойство?
А теперь попробуйте записать данные свойства в буквенном виде:
.
Каковы допустимые значения а и в? (Предполагаемый ответ: , )
А теперь докажем это утверждение, пользуясь определением, т.е. нам нужно доказать:
1) ;
2) .
Доказательство:
по определению , (по свойству чисел), тогда .
по свойству степеней, для любых имеем:
.
Еще раз формулируем свойство.
А если у нас не 2, а 3 или 4, или еще больше множителей?
Справедлива ли эта формула?
Приведите примеры.
При разработке фрагмента урока была использована следующая литература: [21].
Условия продуктивного развития личности в учебной деятельности
Безусловно, конечной целью обучения является всестороннее развитие личности. Учебная деятельность является ведущей для школьников и студентов, поэтому крайне важно привить им основные навыки продуктивной работы. Как правильно построить учебную деятельность, чтобы она способствовала развитию личнос ...
Использование компьютерных технологий при изучении темы
"Логарифмические уравнения"
При объяснении темы "Логарифмические уравнения", во время раскрытия методов решения логарифмических уравнений можно воспользоваться мультимедийной программой "Математика. Решение уравнений и неравенств". Её курс построен на визуальном и фонематическом восприятии информации. На ...
Сравнительный анализ геометрического материала, содержащегося в учебниках
Все учебники и по содержанию, и по стилю выстроены так, чтобы обеспечить школьникам достаточно мягкий и безболезненный переход к систематическому изучению в 7 классе курса геометрии. Содержание учебников полностью отвечает требованиям стандарта математического образования 2004 года и опирается на ...