При организации коллективных занятий важно учитывать ряд специфических особенностей, о которых говорит в своей книге В.К. Дьяченко:
1. Каждый участник занятий попеременно выступает в своеобразной роли то «ученика», то «учителя».
2. Ближайшая цель каждого участника занятий: и «ученика», и «учителя» – учить всему тому, что он знает или изучает сам.
3. Деятельность каждого участника занятий имеет отчетливо общественно полезную окраску, так как он не только учится, но и постоянно обучает других.
4. Основной принцип работы – все по очереди учат каждого, и каждый всех.
5. Каждый отвечает не только за свои знания, но также за знания и успехи товарищей по учебной работе.
6. Полное совпадение и единство коллективных и личных, индивидуальных интересов: чем лучше и больше я обучаю других, тем больше и лучше знаю сам.
Исследовав обучающие функции коллективной деятельности, в своей работе Р.А. Утеева делает вывод о том, что эта форма эффективна лишь на этапе изучения нового материала, а также при обобщении и систематизации какого-либо изученного раздела. На других этапах урока математики организация коллективной деятельности затруднена в силу ряда причин, в частности разнородности класса и невозможности во всех случаях подобрать соответствующие задания, удовлетворяющие всем требованиям коллективной деятельности.
Рассмотрим особенности организации коллективной формы на этапе изучения нового материала. Так как в основе данного способа лежит коллективная деятельность учащихся класса, то основная цель деятельности учителя – формирование у учащихся самостоятельности мышления, умений осуществлять поиск и самим, с незначительной помощью учителя, получать новое знание. Эта цель достигается тогда, когда учитель не излагает новый материал, а подготавливает учащихся к самостоятельному формулированию нового, обобщению какой-нибудь закономерности, следующей из частных случаев, создает проблемную ситуацию, организует поиск и решение поставленной перед классом проблемы.
Основные методы, используемые при этом: проблемная беседа, опыт, эксперимент, лабораторно-практическая работа, решение проблемно-поисковых задач.
По мнению Р.А.Утеевой, коллективная форма учебной деятельности учащихся наиболее эффективна на этапе изучения нового, когда:
Учебный материал содержит в себе обобщение какой-нибудь закономерности, следующей из частных случаев, в результате которого можно получить определение, правило, формулу, свойство, прием решения задач определенного типа.
Пример 1: а) Умножение и деление степеней – Алгебра, 7 класс. Опираясь на известное учащимся определение степени, и, рассматривая ряд частных случаев, они сами приходят к выводу основного свойства степени с натуральным показателем, обосновывают его и формулируют правило умножения степеней с одинаковыми основаниями;
b) Формула n-ого члена арифметической прогрессии – Алгебра, 9 класс. Опираясь на определение арифметической прогрессии и рассматривая ряд частных случаев, учащиеся могут сами открыть формулу:
an = a1 + d (n - 1).
Содержание учебного материала позволяет поставить перед учащимися «проблему», создать проблемную ситуацию.
Пример 2: а) Разложение многочлена на множители способом группировки – Алгебра, 7 класс;
b) Формула суммы n первых членов арифметической прогрессии –Алгебра, 9 класс;
c) Правило сложения двух отрицательных чисел –Математика, 6 класс.
Материал большого объема и его изложение связано с вычислениями, построениями графиков, проведением сравнения, рассмотрением разных случаев, позволяющих сделать обобщение материала.
Пример 3: а) Функция y = xn - Алгебра, 9 класс. Учащиеся уже знакомы с частными случаями функции при n = 1, 2, 3, их графиками и свойствами. Здесь происходит дальнейшее обобщение понятия степеней функции, ее свойств, особенностей графиков для любого натурального значения показателя n;
b) Исследование взаимного расположения графиков функции и
при различных значениях a, b и k – Алгебра, 8 класс.
Учащиеся уже знакомы с данными функциями и их графиками. Коллективная деятельность учащихся позволяет рассмотреть на уроке все возможные случаи и установить когда: графики не пересекаются; пересекаются только в одной точке; пересекаются только в двух точках; пересекаются более чем в двух точках.
Учебный материал содержит вторую группу знаний (теоремы), схема доказательства которых известна, и опирается на предыдущий материал, вполне доступный самим учащимся.
Пример 4: а) Сложение и вычитание дробей с разными знаменателями – Алгебра, 8 класс. Сводится к сложению и вычитанию дробей с одинаковыми знаменателями и опирается на основное свойство дроби;
Диагностика нервно-психического развития детей
раннего возраста
Диагностика нервно-психического развития проводилась на базе МДОУ Детский сад II категории №368, в общеразвивающей группе «Солнышко» (группа детей в возрасте 2 лет). Для диагностики нервно-психического развития детей использовалась схема экспертной оценки, разработанной Н.М. Аксариной, К.Л. Печоро ...
Хранение курсовых работ
Курсовые работы хранятся на кафедре. Срок хранения курсовых работ устанавливается Номенклатурой дел Института.
Для представления на конкурсы или использования в интересах выпускающих кафедр курсовые работы решением заведующего кафедрой могут быть оставлены на хранение на кафедрах и после установл ...
Использование игры в коррекции затрудненного
общения
Прежде всего, в ходе игровой психокоррекции детей с нарушениями общения необходимо снизить конфликтность, снять неадекватные стереотипы поведения, разрешить основные психологические коллизии ребенка. Следует отметить, что эффективность коррекции достигается чаще всего в процессе коллективных игр, ...