Система домашних упражнений

Страница 1

Обстоятельное решение более менее сложной геометрической задачи на построение требует много времени. Между тем на уроки геометрии в средней школе отводиться сравнительно мало часов. В силу этих причин учитель математики решает весьма огромное количество задач на построение, а остальные упражнения этого рода предлагаются учащимся порядке домашнего задания, причем, если есть в этом необходимость, дает соответствующие пояснения и указания.

Рассмотрим виды домашних упражнений, которые можно предложить учащимся.

Пропедевтический вид домашних упражнений для решения конкретных задач

1. Простейшие графические построения.

В стабильном учебнике основные задачи на построение излагаются после того, как учащиеся пройдут смежные и вертикальные углы, свойства сторон треугольника, признаки равенства треугольников, ознакомятся с некоторым геометрическим местом точек. Между тем учащиеся с первых же дней знакомства с геометрией должны выполнять некоторые простейшие построения, чтобы в дальнейшем при решении геометрических задач на построение не встречать затруднений в выполнении графической стороны таких упражнений. Причем, учащимся разрешается использоваться не только циркулем и линейкой, но и транспортиром, и чертежным угольником.

2. Построить угол (без транспортира)

плоскость , если известно, что

.

3. Построение отрезков, определенных алгебраическими формулами.

4. Установление связи между данными геометрическими образами.

Эти упражнения побуждают учащихся вдумываться в условие предлагаемой задачи, развивают в них умение отыскивать те метрические закономерности между данным геометрическими образами, с изменением которых изменяется конфигурация этих образов.

5. Определение возможных конфигураций данных геометрических образов. Эти упражнения приучают вдумчиво относиться к условию задачи. Особенно желательно, чтобы в каждом отдельном случае выполнение такого упражнения предшествовало решению задачи, в которой имеют место рассматриваемые конфигурации геометрических образов. Вот некоторые из таких упражнений:

1) указать возможные конфигурации следующих геометрических образов: … .

2) сколько точек касания и пересечения и при каких конфигурациях могут иметь следующие геометрические образы

3) пояснить чертежами в каких случаях окружность и правильный пятиугольник могут иметь 8, 9, 10 общих точек,

4) дать различные конфигурации трех окружностей.

Задача: Пояснить чертежами, при каких конфигурациях и сколько общих точек имеют контуры треугольника и четырехугольника.

a. Одна общая точка

b. Две общие точки

c. Три общие точки

d. Четыре общи точки

e. Пять общих точек

f. Шесть общих точек

g. Бесконечно много общих точек

Страницы: 1 2


Другие статьи:

Программа Е. Рылеевой "Как помочь дошкольнику найти свое Я"
Программа разработана психологом Еленой Рылеевой в рамках педагогической технологии "Открой себя", структура которой представлена в лестнице социальной зрелости. Для ребенка 6 лет это практическая энциклопедия семейного воспитания. В книге содержится описание индивидуальных занятий взро ...

Общие требования к содержанию и оформлению курсовых работ
Курсовая работа имеет следующую структуру: титульный лист; оглавление; текст работы, структурированный по главам (параграфам, разделам); заключение; список литературы; приложения (при необходимости). Общий объем курсовой работы не должен превышать 2000 слов, исключая пробелы, рисунки, схемы ...

Понятие способностей в психологии
Способности - индивидуально-психологические особенности человека, проявляющиеся в деятельности и являющиеся условием успешности ее выполнения. От способностей зависит скорость, глубина, легкость и прочность процесса овладения знаниями, умениями и навыками, но сами они к ним не сводятся. На основе ...

Главные разделы

Copyright © 2021 - All Rights Reserved - www.centrstar.ru