Обстоятельное решение более менее сложной геометрической задачи на построение требует много времени. Между тем на уроки геометрии в средней школе отводиться сравнительно мало часов. В силу этих причин учитель математики решает весьма огромное количество задач на построение, а остальные упражнения этого рода предлагаются учащимся порядке домашнего задания, причем, если есть в этом необходимость, дает соответствующие пояснения и указания.
Рассмотрим виды домашних упражнений, которые можно предложить учащимся.
Пропедевтический вид домашних упражнений для решения конкретных задач
1. Простейшие графические построения.
В стабильном учебнике основные задачи на построение излагаются после того, как учащиеся пройдут смежные и вертикальные углы, свойства сторон треугольника, признаки равенства треугольников, ознакомятся с некоторым геометрическим местом точек. Между тем учащиеся с первых же дней знакомства с геометрией должны выполнять некоторые простейшие построения, чтобы в дальнейшем при решении геометрических задач на построение не встречать затруднений в выполнении графической стороны таких упражнений. Причем, учащимся разрешается использоваться не только циркулем и линейкой, но и транспортиром, и чертежным угольником.
2. Построить угол (без транспортира)
плоскость , если известно, что
.
3. Построение отрезков, определенных алгебраическими формулами.
4. Установление связи между данными геометрическими образами.
Эти упражнения побуждают учащихся вдумываться в условие предлагаемой задачи, развивают в них умение отыскивать те метрические закономерности между данным геометрическими образами, с изменением которых изменяется конфигурация этих образов.
5. Определение возможных конфигураций данных геометрических образов. Эти упражнения приучают вдумчиво относиться к условию задачи. Особенно желательно, чтобы в каждом отдельном случае выполнение такого упражнения предшествовало решению задачи, в которой имеют место рассматриваемые конфигурации геометрических образов. Вот некоторые из таких упражнений:
1) указать возможные конфигурации следующих геометрических образов: … .
2) сколько точек касания и пересечения и при каких конфигурациях могут иметь следующие геометрические образы
3) пояснить чертежами в каких случаях окружность и правильный пятиугольник могут иметь 8, 9, 10 общих точек,
4) дать различные конфигурации трех окружностей.
Задача: Пояснить чертежами, при каких конфигурациях и сколько общих точек имеют контуры треугольника и четырехугольника.
a. Одна общая точка
b. Две общие точки
c. Три общие точки
d. Четыре общи точки
e. Пять общих точек
f. Шесть общих точек
g. Бесконечно много общих точек
Организация и методические основы проведения урока физической культуры
Результативность урока физической культуры во многом зависит от того, насколько преподаватель будет претворять намеченный им план, применять наиболее рациональные методы организации деятельности занимающихся и методические приемы, продуктивно использовать имеющиеся оборудование, инвентарь, техниче ...
Педагогическая теория Коменского. Структура и содержание «Великой дидактики»
Центральным трудом педагогической теории Яна Амоса Коменского по праву считается «Великая дидактика». Задуманная им еще в молодости, она вынашивалась долгие годы, обрастала различными дополнениями и приложениями. Для своего времени она представляла собой поистине революционный учебник педагогичес ...
Дидактические возможности, типы и основные характеристики аудиовизуальных
средств обучения английскому языку
В XXI веке все больше внимания уделяется вопросу внедрения современных информационных компьютерных технологий практически во все сферы деятельности человека. Сфера образования не могла стать исключением. Именно сфера образования наряду с немногими другими характеризуется огромным потенциалом и раз ...