Существенным элементом структуры познавательного педагогического процесса являются методы обучения. Под методом обучения будем понимать упорядоченный способ взаимосвязанной деятельности учителя и учащихся, направленный на достижение целей обучения. Система методов обучения состоит из общих методов обучения, разработанных дидактикой, и из специальных методов обучения математике, отражающих основные методы познания, используемые в математике.
Для обучения учащихся 8-9 классов геометрическим преобразованиям могут быть использованы различные методы обучения. Наиболее целесообразно в классах, непосредственно предшествующих профильным, и профильных классах использовать метод обучения через задачи. Сущность данного метода состоит в том, что математические задачи выступают как средство обучения и позволяют организовать процесс обучения таким образом, чтобы каждому учащемуся, независимо от его интересов и задатков, дать возможность обучаться по своей индивидуальной траектории.
Задачи делятся на воспроизводящие, которые способствуют выработке и закреплению определенного навыка или умения, и творческие, помогающие выявить и развить способности детей. Именно творческие задачи помогают самовыразиться учащимся, реализовать свои индивидуальные задатки.
Целесообразность введения элементов профилирования в 8-9 классах с помощью системы прикладных задач обосновывается тем, что многие учащиеся с гуманитарными наклонностями, встретившись с задачей математического или физического содержания, не проявляют интереса к ее решению. В то же время, задача исторического, художественного или лингвистического содержания может стать для них более интересной и привлекательной. В этом случае учащимся будет легче установить связи между величинами задачи и выразить их на математическом языке.
В соответствии с мнением Я.И. Груденова, изучение математических положений можно подразделить на три этапа: введение, усвоение и закрепление. На этапе введения учащиеся знакомятся с формулировками и доказательствами предложений. При усвоении происходит запоминание материала, и школьники учатся применять математические предложения в простейших случаях. Закрепление сводится к повторению формулировок и отработке навыков применения к решению задач. Проверка знаний по теме может включаться как элемент в перечисленные этапы или выделяться отдельно.
На протяжении всех этапов изучения материала учащиеся решают математические задачи. На вводном этапе задачи играют роль подготовительных упражнений. При усвоении, закреплении и проверке теории они используются в качестве упражнений в применении знании и отработке практических навыков. Например, перед построением отрезков, симметричных относительно оси, учащимся необходимо восстановить в памяти определение построения точек, симметричных друг другу относительно прямой. Упражнение, предназначенное для учащихся, ориентированных на гуманитарные области знаний, может представлять собой тест на знание данного определения: «Чтобы построить две точки, симметричные друг другу относительно прямой, нужно .». Учащимся необходимо вписать в пропуски соответствующий текст.
Умственное воспитание
Умственное воспитание ребенка рассматривается не только как овладение им знаниями и способами мыслительной деятельности, но и как формирование определенных качеств личности.
Умственное воспитание детей происходит как в ходе общения со взрослыми, в играх со сверстниками, так и в процессе системати ...
Роль семьи в воспитании ребенка
Всестороннее воспитание ребенка, подготовка его к жизни в обществе – главная социальная задача, решаемая обществом и семьей.
Семья – это коллектив, члены которого взаимосвязаны определенными обязанностями.
Семья – это малая социальная группа, связанная брачными или родственными связями. У семьи ...
Методы решения насущных вопросов
Механизмами достижения новых целей инженерного образования России могут, прежде всего, стать концентрация ресурсов на приоритетном направлении подготовки инновационных менеджеров, использования известного метода параллельного планирования и проектирования, активного выхода в мировое информационное ...