Мы рассмотрели один из способов решения иррациональных уравнений. Это возведение обеих частей уравнения в квадрат. А если переменная находится под знаком корня 3-ей, 4-ой и т.д. степени. Тогда как быть?
(Предполагаемый ответ: возвести обе части уравнения в 3-ю, 4-ю и т.д. степень).
Учитель: Кто попытается сформулировать общий способ решения иррациональных уравнений?
Выслушать все высказывания и в завершении подвести итог.
Учитель: «Значит одним из способов решения иррациональных уравнений является возведение обеих частей уравнения в степень, равную показателю степени корня. И не забыть, при этом сделать проверку, отсеяв, возможные посторонние корни».
Закрепление изученного материала – 10 мин.
Учитель: Итак, существует несколько способов решения иррациональных уравнений. Мы сегодня рассмотрели только некоторые из них. Давайте, перечислим, какие это способы?
(Предполагаемый ответ: возведение обеих частей уравнения в степень, равную показателю степени корня, графический способ, способ замены переменной).
Учитель: Расскажите алгоритм решения уравнений каждого из способов.
Учащиеся очень быстро проговаривают три алгоритма.
Учитель: Молодцы! А теперь прошу внимание на плакат
Плакат с уравнениями:
Рис. 9
Учитель: Как решить первое уравнение?
Выслушивает все варианты ответов. Если будут затруднения, вспоминает еще раз с учащимися определение арифметического квадратного корня и обратить внимание на доску с карточками, , где записаны условия выполнения равенства
(Ответ: уравнение не имеет решения).
Второе уравнение. Учащиеся дают свои варианты решения. Учитель их внимательно выслушивает, корректирует, задает наводящие вопросы, если это необходимо. И все вместе делают вывод, что уравнение не имеет корней.
Третье уравнение. Все необходимые рассуждения высвечиваются на экран. Решаем это уравнение с помощью области определения уравнения. В итоге получаем систему:
которая не имеет решений. Следовательно, и уравнение не имеет решений.
Плакат с решением уравнений:
Решение уравнений:
![]() ![]()
![]() ![]() ![]() ![]() |
Рис. 10
Вклад В.А. Сухомлинского в становление этнопедагогики
В становлении этнопедагогики как науки следует отметить и заслуги В.А. Сухомлинского. Он определил народную педагогику как средство обновления и совершенствования своей учебно-воспитательной работы с детьми; охарактеризовал школу как "колыбель народа", "народный очаг воспитания" ...
Создание условий для занятий
Успех обучающих занятий во многом зависит от условий их проведения (метеорологических данных, лыжного снаряжения, выбора места для занятия и т.п.). Лучше всего занятия в средней климатической полосе России проходят при температуре воздуха -8-12, полном безветрии и сухом, рассыпчатом снеге. Для дет ...
Формы обучения и воспитания как предмет изучения педагогики
обучение воспитание педагогика
Воспитание и обучение как способы осуществления педагогического процесса составляют, таким образом, технологии образования, в которых фиксируются целесообразные и оптимальные шаги, этапы, ступени достижения выдвинутых целей образования. Педагогическая технология - э ...