«м» Отрезок данной длины перемещается параллельно самому себе так, что один его конец скользит по окружности О (r). Докажите, что другой конец отрезка описывает при этом окружность, равную данной.
Приведенные выше задачи к каждому разделу темы «Геометрические преобразования плоскости», целесообразно предоставлять учащимся в форме самостоятельной работы, условия которой состоят в следующем: самостоятельная работа состоит из 9 задач и считается выполненной в том случае, если решены три любые задания из девяти предложенных. Условные обозначения задач - «г», «е», «м» - из этических соображений целесообразно не указывать.
Целью такой работы является формирование у учащихся умений самостоятельно приобретать и применять знания в соответствии со своими возможностями, интересами, устремлениями. В результате выполнения самостоятельных работ такого плана учитель может судить о познавательных интересах и способностях учащихся класса
Итоговая работа по теме «Геометрические преобразования плоскости» состоит из пяти заданий. Первые три - содержат основные вопросы по теме, которые составляют общеобразовательный минимум и знание которых необходимо продемонстрировать всем учащимся независимо от их интересов. Первые четыре задания рекомендовано решить учащимся группы естественнонаучного направления. Всю работу - учащимся группы математического направления.
Реализация идеи геометрических преобразований в обучении способствует формированию мировоззрения учащихся, что крайне необходимо при подготовке учащихся 8-9 классов к выбору профиля обучения в 10-11 классах.
Например, в ходе изучения осевой и центральной симметрии учащиеся получают представление о симметрии в окружающем мире, а также развивается их пространственное и конструктивное мышление. Школьники учатся применять знания о данном геометрическом преобразовании в практической деятельности, которая им наиболее интересна. В результате изучения видов симметрии учащиеся должны овладеть умениями строить ось и центр симметрии, распознавать симметричные фигуры, проводить оси и центры симметрии часто встречающихся фигур (квадрата, прямоугольника, круга), строить в простых случаях фигуры, симметричные данным относительно прямой и точки (точку, отрезок, треугольник, окружность).
В результате можно сделать вывод о том, что увеличение упражнений разнообразного содержания при обучении геометрическим преобразованиям в 8-9 классах обеспечивает усвоение дополнительного теоретического и практического материала на геометрические преобразования (понятий, теорем); способствует овладению школьниками методом геометрических преобразований; ориентирует ученика на поиск различных решений; усиливает прикладную направленность курса; придает деятельности школьников исследовательскую направленность.
Особенности и возможности логоритмики
Логопедическая ритмика исходит из общих методологических основ логопедии и дефектологии и является одним из ее разделов. Она, изучает закономерности развития, воспитания, а также нарушения психомоторных функций в синдроме речевой патологии. Важнейшей задачей, определяющей особую значимость логопед ...
Экскурс в истории термина «дислалия»
Дислалия (от греч. dis – приставка, означающая частичное расстройство, и lalio – говорю) – нарушение звукопроизношения при нормальном слухе и сохранной иннервации речевого аппарата (1, стр. 66 – 68).
Изучение расстройств произношения началось очень давно, но велось недостаточно дифференцировано. ...
Программа Е.Н. Лебеденко "Развитие самосознания
и индивидуальности"
Программа "Какой Я?". Развитие самосознания и индивидуальности.
Цель программы направлена на развитие самосознания и индивидуальности, эмоциональной сферы и индивидуальных способностей, коммуникативных навыков и социальной активности. Автор предлагает программу, которая предназначена дл ...