Фрагмент урока для 9-го класса по теме «Теорема об отрезках хорд, пересекающихся внутри круга»

Информация о педагогике » Методика организации коллективной формы учебной деятельности учащихся на уроках математики в средней школе » Фрагмент урока для 9-го класса по теме «Теорема об отрезках хорд, пересекающихся внутри круга»

Комментарии к уроку

Данный фрагмент представляет собой пример того, как можно путем постановки проблемного домашнего задания создать на уроке ситуацию, побуждающую учащихся к анализу своих действий и самостоятельному выявлению нового материала. Тема урока заранее не объявляется, а вытекает из проблемной ситуации. Так, тема урока становится проблемой, разрешение которой увлекает учащихся.

Оборудование: доска, мел.

Изучение нового материала – 15 мин.

Перед изучением темы учащимися предлагается дома решить следующую задачу:

Хорда AB, пересеклась с хордой CD в точке О, делится на отрезки АО = 45 мм и ОВ = 30 мм. Определить отрезок CD, если OD = 90 мм.

Урок начинается с проверки выполнения домашнего задания. Выясняется, что большинство учеников справились с работой, притом различными способами.

Одни построили отрезок АВ = 75 мм, отметили на нем точку О и отложили отрезок OD = 90 мм по трем точкам A, B, D построили окружность. Точка С была найдена как точка пересечения прямой OD с этой окружностью.

Другие построили круг произвольного радиуса, в нем хорду АВ = 75 мм и на последней точку О. На окружности отметили точку D так, что OD = = 90 мм. Точка С была найдена как точка пересечения прямой OD с окружностью.

Третьи построили чертеж и нашли отрезок СО из подобия треугольников AOC и BOD.

Каждый способ решения задачи ученики объясняли по своим же чертежам. Последний способ решения задачи отмечается учителем как самый рациональный.

Учеников, вероятно, очень удивит то, что, несмотря на произвольность угла пересечения хорд (в первом случае), радиуса круга (во втором случае) и различия способов решения задачи, они получили один и тот же результат: СО = 15 мм. Это убедит их в существовании определенной зависимости между отрезками пересекающихся в круге хорд. Еще раз обратившись к третьему случаю решения задачи, ученики сформулировали проблему: найти свойство отрезков пересекающихся хорд. Затем учитель называет тему урока и записывает ее. Построив чертеж, ученики составляют пропорцию из отношения сходственных сторон подобных треугольников. Используя основное свойство пропорции, они дают формулировку теоремы.

Таким образом, проблемная ситуация возникла в результате рассмотрения способов решения конкретной задачи.


Другие статьи:

Элективные курсы в образовательной области «Математика»
В старших классах школы изучаются два предмета, составляющих образовательную область “Математика”, – алгебра и основы математического анализа и геометрия. Сейчас наметилась тенденция наличия в учебном плане школы одного предмета – математики. Можно предположить, что в создаваемой профильной школе ...

Причины общего недоразвития речи
Речь возникает при наличии определенных биологических предпосылок и, прежде всего, нормального созревания и функционирования центральной нервной системы. Среди факторов, способствующих возникновению общего недоразвития речи у детей, различают неблагоприятные внешние (экзогенные) и внутренние (эндо ...

Понятие эстетического воспитания школьников старших классов
эстетический декоративный искусство школа Эстетическое воспитание основывается на природных возможностях эстетического развития человека. Однако эти потенциальные возможности превращаются в реальные способности только благодаря воспитанию. Можно иметь безукоризненный слух и не слышать музыку Бетх ...

Главные разделы

Copyright © 2021 - All Rights Reserved - www.centrstar.ru