Методические особенности изучения темы «Треугольники и четырехугольники»

Страница 2

У детей 11-12 лет осознанные побудительные мотивы к изучению геометрии еще, как правило, не сформировались. Поэтому формирование непосредственного интереса к содержанию этого предмета должно быть обусловлено интересными заданиями, связанными с практической деятельностью. С учетом особенностей развития детей указанного возраста геометрические понятия и факты необходимо вводить на основе имеющегося у них жизненного опыта, новых наблюдений, экспериментов, конструирования и моделирования. Ведь геометрические фигуры – это основные «кирпичики» геометрических знаний, они напоминают детали конструктора: из самых простых деталей с простейшими или изученными свойствами конструируются новые фигуры с более сложными свойствами. Поэтому изучаемый материал желательно наполнить многочисленными рисунками и чертежами, значительную часть которых могут сопровождать нарисованные учениками наглядные геометрические фигуры. Чертежи и рисунки – эффективное средство формирования у учащихся умений подмечать закономерности на основе наблюдений, вычислений, сопоставлений. Они способствуют в большей степени лучшему усвоению свойств и понятий, развивают мышление, помогают в запоминании наиболее трудного для восприятия материала, упрощают решение задач, приводят к открытию какого-то факта. То есть ученики на конкретном примере могут сами увидеть те свойства, которыми обладает данный изучаемый объект, вычленить из предложенного готового чертежа самое главное, что заключает максимум информации.

Обучение младших школьников теме «Треугольники и четырехугольники» должно быть также подчинено всем особенностям построения пропедевтического курса геометрии, которые перечислены выше.

При изучении в 5 классе темы «Треугольники и четырехугольники» (по учебнику математики авторов: Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др.) ставятся следующие основные методические цели: познакомить учащихся с классификацией треугольников по сторонам и углам; развить представления о прямоугольнике; сформировать понятие равных фигур, площади фигуры, научить находить площади прямоугольников и фигур, составленных из прямоугольников; познакомить с единицами измерения площадей. Учащиеся углубляют свои знания о треугольниках и четырехугольниках, они знакомятся со свойствами равнобедренного треугольника, а также со свойствами прямоугольника, изучают понятие равных фигур. Заметим, что у учащихся уже есть интуитивное представление о равных фигурах. Оно сформировалось в ходе выполнения таких заданий, как вырезание фигур из бумаги, перечерчивание фигуры по клеткам квадратной сетки и др. При этом речь шла о построении «такой же» фигуры, как данная, о вырезании «одинаковых» фигур. Теперь интуитивные представления учащихся обобщаются и систематизируются. Вводится термин «равные фигуры» и разъясняется, что так называют фигуры, которые могут быть совмещены друг с другом путем наложения. Это понятие конкретизируется по отношению к уже известным фигурам: отрезкам, углам, окружностям и др. Линия измерения геометрических величин продолжается темой «Площадь фигуры». Из начальной школы учащимся известно, как найти площадь прямоугольника. Здесь эти знания актуализируются, отрабатываются и расширяются: формируется представление о площади фигуры как о числе единичных квадратов, составляющих данную фигуру; о свойстве аддитивности площади (без соответствующей терминологии); правило вычисления площади квадрата формулируется через понятие «квадрат числа»; вводятся новые единицы площади (гектар, ар); выявляются зависимости между единицами площади, объясняется, как можно приближенно вычислить площадь круга.

Все вышеописанное дает возможность поставить следующие задачи при изучении темы «Треугольники и четырехугольники» в 5 классе:

Страницы: 1 2 3


Другие статьи:

Математические задачи, решаемые при помощи движений
Существенным элементом структуры познавательного педагогического процесса являются методы обучения. Под методом обучения будем понимать упорядоченный способ взаимосвязанной деятельности учителя и учащихся, направленный на достижение целей обучения. Система методов обучения состоит из общих методов ...

Методы диагностики сформированности фонематического слуха и восприятия у детей с ЗПР
Состояние звуковой стороны речи и фонематического восприятия имеет большое значение для успешного овладения языком и обучения ребенка в школе. Р.Е. Левина рассматривала фонематическое восприятие и звуковой анализ как узловое образование, ключевой момент в системе коррекционной работы, который позв ...

Рекомендации по формированию и активизации познавательной деятельности учащихся на уроках в специальных школах VIΙI вида
I. Основа активности учебно-познавательной деятельности: - адаптация, приспособление детской психологии к созданным на уроке условиям; - стимулирование учебно-познавательной деятельности учащихся; - преодоление противоречий между познавательными и практическими заданиями, выдвигаемыми ходом обу ...

Главные разделы

Copyright © 2020 - All Rights Reserved - www.centrstar.ru