1. Округление одного из сомножителей.
Если один из двух сомножителей увеличить или уменьшить на несколько единиц (долей), то произведение соответственно увеличится или уменьшится на число, равное произведению другого сомножителя на прибавляемое или вычитаемое число единиц.
Рассмотрим четыре случая сокращенного умножения, основанных на этом свойстве.
а) Округляем множимое до разрядного (целого) числа, отнимая от него несколько единиц (долей), затем умножаем отдельно разрядное (целое) число и отнятые единицы (доли) на множитель и полученные произведения складываем.
.
б) Округляем множимое до разрядного (целого) числа, прибавляя несколько единиц (долей), умножаем отдельно разрядное (целое) число и прибавленные единицы (доли) на множитель и из первого произведения вычитаем второе произведение.
.
в) Округляем множитель до разрядного (целого) числа, уменьшая его на несколько единиц (долей), затем отдельно умножаем множимое на разрядное (целое) число и на отнятые единицы (доли) и полученные произведения складываем.
.
К этому способу сокращенного умножения относится умножение на 15; 150; 1,5; 0,15; 11; 111; 1,1; 0,11; 11,1; 35; 45; 65; 75; 80; 9,5; 4,5 и т.п.
При умножении на 15 умножают на 10 и прибавляют половину полученного произведения:
.
При умножении на 150 умножают на 100 и прибавляют половину полученного произведения:
.
При умножении на 11 данное число умножают на 10 и к полученному произведению прибавляют данное число:
.
г) Округляем множитель до разрядного (целого) числа, увеличивая его на несколько единиц (долей), затем умножаем множимое отдельно на разрядное (целое) число и на прибавленные единицы (доли) множителя и из первого произведения вычитаем второе произведение.
.
К этому способу сокращенного умножение подходит умножение на 9; 99; 999; 0,9; 9,9; 0,99; 19; 29; 39; 49; 69; 79; 89; 1,9; 2,9; 3,9; 4,9; 5,9; 6,9; 7,9; 8,9 и т.п. При умножении на 9; 99; 999 и т.п. умножают данное число на 10; 100; 1000 и т.п. и из полученного произведения вычитают данное число.
1) ;
2) .
При умножении на 19; 29; 39; 49; 59; 69; 79; 89 данное число умножают на 20; 30; 40; 50; 60; 70; 80 и 90 и из полученного произведения вычитают данное число.
1) ;
2) ;
3) ;
4) .
2. Округление слагаемых и замена сложения умножением.
На основании определения умножения и свойств изменения суммы при изменении слагаемых можно округлить слагаемые до одного и того же разрядного числа, разрядное слагаемое число умножить на число слагаемых и к произведению прибавить или из произведения вычесть разницу, которая получается в результате замены каждого слагаемого разрядным числом (целым числом).
3. Округление уменьшаемого в случае, когда вычитаемое записано в виде произведения.
Если уменьшаемое можно разложить на два слагаемых, одно из которых равно множимому вычитаемого, причем его легко отнять от уменьшаемого, то вычитание производят следующим образом:
Структура педагогической системы
В настоящее время концепция педагогических способностей, развиваемая Н.В. Кузьминой , представляет собой наиболее полную системную трактовку. В этой концепции все педагогические способности соотнесены с основными аспектами (сторонами) педагогической системы.
Сначала коротко рассмотрим некоторые а ...
Концептуальные идеи здоровьесберегающих технологий
Задача здоровьесберегающей педагогики в рамках образовательного процесса - обеспечить выпускнику школы высокий уровень здоровья, сформировать культуру здоровья, тогда аттестат о среднем образовании будет действительной путёвкой в счастливую самостоятельную жизнь, свидетельством умения молодого чел ...
Декоративно-оформительское искусство в школе
В современной системе обучения и воспитания в центре внимания проблемы гармонического развития личности. Главная цель образовательной области “Технология” подготовка учащихся к самостоятельной трудовой жизни в условиях рыночной экономики. Для достижения этой цели очень важно подготовить учащихся к ...